The was part of some LR ablations. It's not bad but you should probably prefer 8e-6
I ran the tests for 2 runs just to try to lower variance. These are all using temp 0.2, min_p 0.1, freq penalty 0.5
Model | AVG Score | ELYZA100 | JA MT-Bench | Rakuda | Tengu-Bench | JA Char % |
---|---|---|---|---|---|---|
shisa-v1-llama3-8b.lr-2e4 | 3.97 | 4.60 | 4.54 | 3.33 | 3.42 | 92.42% |
shisa-v1-llama3-8b.lr-5e5 | 5.73 | 6.28 | 6.45 | 5.37 | 4.81 | 90.93% |
shisa-v1-llama3-8b (2e5 avg) | 6.33 | 6.51 | 6.66 | 6.68 | 5.48 | 91.51% |
shisa-v1-llama3-8b.8e6 | 6.59 | 6.67 | 6.95 | 7.05 | 5.68 | 91.30% |
shisa-v1-llama3-8b.5e6 | 6.42 | 6.33 | 6.76 | 7.15 | 5.45 | 91.56% |
shisa-v1-llama3-8b.2e6 | 6.31 | 6.26 | 6.88 | 6.73 | 5.38 | 92.00% |
- The 2e-4 and 5e-5 are definitely overtrained and perform significantly worse.
- 2e-5 is on the edge since weightwacher shows the embed as slightly overtrained for 2e-5, but NEFTune version is not
- 8e-6 performs the best, and 5e-6 also performed slightly better than 2e-5
See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: llama3
datasets:
- path: augmxnt/ultra-orca-boros-en-ja-v1
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/lr-5e6
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-v1-llama3-8b.lr-5e6
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.00
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
outputs/lr-5e6
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5020
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3951 | 0.0064 | 1 | 0.8645 |
0.891 | 0.5020 | 79 | 0.5705 |
0.8575 | 1.0040 | 158 | 0.5243 |
0.7296 | 1.4853 | 237 | 0.5079 |
0.7068 | 1.9873 | 316 | 0.4976 |
0.6618 | 2.4694 | 395 | 0.5020 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for shisa-ai/shisa-v1-llama3-8b.lr-5e6
Base model
meta-llama/Meta-Llama-3-8B-Instruct