|
--- |
|
language: |
|
- hi |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_8_0 |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: '' |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8111 |
|
- Wer: 0.5177 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 50.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 4.9733 | 2.59 | 500 | 5.0697 | 1.0 | |
|
| 3.3839 | 5.18 | 1000 | 3.3518 | 1.0 | |
|
| 2.0596 | 7.77 | 1500 | 1.3992 | 0.7869 | |
|
| 1.6102 | 10.36 | 2000 | 1.0712 | 0.6754 | |
|
| 1.4587 | 12.95 | 2500 | 0.9280 | 0.6361 | |
|
| 1.3667 | 15.54 | 3000 | 0.9281 | 0.6155 | |
|
| 1.3042 | 18.13 | 3500 | 0.9037 | 0.5921 | |
|
| 1.2544 | 20.73 | 4000 | 0.8996 | 0.5824 | |
|
| 1.2274 | 23.32 | 4500 | 0.8934 | 0.5797 | |
|
| 1.1763 | 25.91 | 5000 | 0.8643 | 0.5760 | |
|
| 1.149 | 28.5 | 5500 | 0.8251 | 0.5544 | |
|
| 1.1207 | 31.09 | 6000 | 0.8506 | 0.5527 | |
|
| 1.091 | 33.68 | 6500 | 0.8370 | 0.5366 | |
|
| 1.0613 | 36.27 | 7000 | 0.8345 | 0.5352 | |
|
| 1.0495 | 38.86 | 7500 | 0.8380 | 0.5321 | |
|
| 1.0345 | 41.45 | 8000 | 0.8285 | 0.5269 | |
|
| 1.0297 | 44.04 | 8500 | 0.7836 | 0.5141 | |
|
| 1.027 | 46.63 | 9000 | 0.8120 | 0.5180 | |
|
| 0.9876 | 49.22 | 9500 | 0.8109 | 0.5188 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0.dev0 |
|
- Pytorch 1.10.1+cu113 |
|
- Datasets 1.18.1.dev0 |
|
- Tokenizers 0.11.0 |
|
|