|
--- |
|
language: |
|
- mr |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_8_0 |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: '' |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5951 |
|
- Wer: 0.5435 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 400.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 4.2706 | 22.73 | 500 | 4.0174 | 1.0 | |
|
| 3.2492 | 45.45 | 1000 | 3.2309 | 0.9908 | |
|
| 1.9709 | 68.18 | 1500 | 1.0651 | 0.8440 | |
|
| 1.4088 | 90.91 | 2000 | 0.5765 | 0.6550 | |
|
| 1.1326 | 113.64 | 2500 | 0.4842 | 0.5760 | |
|
| 0.9709 | 136.36 | 3000 | 0.4785 | 0.6013 | |
|
| 0.8433 | 159.09 | 3500 | 0.5048 | 0.5419 | |
|
| 0.7404 | 181.82 | 4000 | 0.5052 | 0.5339 | |
|
| 0.6589 | 204.55 | 4500 | 0.5237 | 0.5897 | |
|
| 0.5831 | 227.27 | 5000 | 0.5166 | 0.5447 | |
|
| 0.5375 | 250.0 | 5500 | 0.5292 | 0.5487 | |
|
| 0.4784 | 272.73 | 6000 | 0.5480 | 0.5596 | |
|
| 0.4421 | 295.45 | 6500 | 0.5682 | 0.5467 | |
|
| 0.4047 | 318.18 | 7000 | 0.5681 | 0.5447 | |
|
| 0.3779 | 340.91 | 7500 | 0.5783 | 0.5347 | |
|
| 0.3525 | 363.64 | 8000 | 0.5856 | 0.5367 | |
|
| 0.3393 | 386.36 | 8500 | 0.5960 | 0.5359 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0.dev0 |
|
- Pytorch 1.10.1+cu113 |
|
- Datasets 1.18.1.dev0 |
|
- Tokenizers 0.11.0 |
|
|