xls-r-300m-marathi / README.md
anton-l's picture
anton-l HF staff
Upload README.md
0f36c3c
metadata
language:
  - mr
license: apache-2.0
tags:
  - automatic-speech-recognition
  - generated_from_trainer
  - hf-asr-leaderboard
  - mozilla-foundation/common_voice_8_0
  - mr
  - robust-speech-event
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: ''
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice Corpus 8.0
          type: mozilla-foundation/common_voice_8_0
          args: mr
        metrics:
          - name: Test WER
            type: wer
            value: 38.27
          - name: Test CER
            type: cer
            value: 8.91

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the mozilla-foundation/common_voice_8_0 mr test set:

  • Without LM

    • WER: 48.53
    • CER: 10.63
  • With LM

    • WER: 38.27
    • CER: 8.91

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 400.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.2706 22.73 500 4.0174 1.0
3.2492 45.45 1000 3.2309 0.9908
1.9709 68.18 1500 1.0651 0.8440
1.4088 90.91 2000 0.5765 0.6550
1.1326 113.64 2500 0.4842 0.5760
0.9709 136.36 3000 0.4785 0.6013
0.8433 159.09 3500 0.5048 0.5419
0.7404 181.82 4000 0.5052 0.5339
0.6589 204.55 4500 0.5237 0.5897
0.5831 227.27 5000 0.5166 0.5447
0.5375 250.0 5500 0.5292 0.5487
0.4784 272.73 6000 0.5480 0.5596
0.4421 295.45 6500 0.5682 0.5467
0.4047 318.18 7000 0.5681 0.5447
0.3779 340.91 7500 0.5783 0.5347
0.3525 363.64 8000 0.5856 0.5367
0.3393 386.36 8500 0.5960 0.5359

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu113
  • Datasets 1.18.1.dev0
  • Tokenizers 0.11.0