library_name: transformers
language:
- ku
Model Card for Model ID
Model Details
ئەم مۆدێلە لەسەر ٦١١٦ شێعر لە ٨٧ کتێب لە ٢١ شاعیرەوە فێر کراوە
این مدل با ٦١١٦ شعر از٨٧ کتاب از ۲۱شاعر تعلیم داده شده است
This model has been trained with 6116 poems from 87 books by 21 poets.
Model Description
Data for fine tune:
هەژار هێمن- پیرەمێرد- قانع- گۆران- وەفایی- نالی- جەلال مەلەکشا- شێرکۆ بێکەس- مەحوی- هێدی- جگەرخوێن- دڵشاد مەریوانی- سابیری- کەمالی- کامەران موکری- ئەخۆل- حەقیقی- سوارە ئیلخانیزادە- نافیع مەزهەر-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: Shabab Koohi
- Funded by [optional]: Shabab Koohi
- Connect to developer: https://www.linkedin.com/in/shabab-koohi/
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: mt5
Model Sources [optional]
- Repository: https://github.com/shkna1368/kurdana/
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("shkna1368/v1-Kurdana")
model = AutoModelForSeq2SeqLM.from_pretrained("shkna1368/v1-Kurdana")
input_ids = tokenizer.encode(question, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=1200, num_beams=200, early_stopping=False)
answer = tokenizer.decode(output_ids[0], skip_special_tokens=True)
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]