t5-small-finetuned-cnn-news

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1121
  • Rouge1: 23.04
  • Rouge2: 8.36
  • Rougel: 18.54
  • Rougelsum: 20.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00056
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 0.02

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 0.0209 15 2.1121 23.04 8.36 18.54 20.84

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
25
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Providers NEW
Examples

Model tree for shubh711/t5-small-finetuned-cnn-news

Base model

google-t5/t5-small
Finetuned
(1743)
this model