RolePlayLake-7B
RolePlayLake-7B is a merge of the following models :
In my current testing RolePlayLake is Better than Silicon_Maid in RP and More Uncensored Than WestLake
I would try to only merge Uncensored Models with Baising towards Chat rather than Instruct
🧩 Configuration
slices:
- sources:
- model: SanjiWatsuki/Silicon-Maid-7B
layer_range: [0, 32]
- model: senseable/WestLake-7B-v2
layer_range: [0, 32]
merge_method: slerp
base_model: senseable/WestLake-7B-v2
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "fhai50032/RolePlayLake-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Why I Merged WestLake and Silicon Maid
Merged WestLake and Silicon Maid for a unique blend:
- EQ-Bench Dominance: WestLake's 79.75 EQ-Bench score. (Maybe Contaminated)
- Charm and Role-Play: Silicon's explicit charm and WestLake's role-play prowess.
- Config Synergy: Supports lots of prompt format out of the gate and has a very nice synergy
Result: RolePlayLake-7B, a linguistic fusion with EQ-Bench supremacy and captivating role-play potential.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.54 |
AI2 Reasoning Challenge (25-Shot) | 70.56 |
HellaSwag (10-Shot) | 87.42 |
MMLU (5-Shot) | 64.55 |
TruthfulQA (0-shot) | 64.38 |
Winogrande (5-shot) | 83.27 |
GSM8k (5-shot) | 65.05 |
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for silencer107/bobik3-7b
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard70.560
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard87.420
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.550
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard64.380
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard83.270
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard65.050