silk-road's picture
Upload 2 files
44e0fce verified
---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_format: pickle
model_file: lda_openai_clip_model.pkl
widget:
- structuredData:
x0:
- 0.0
x1:
- 0.0
x10:
- 0.0
x100:
- 0.0
x101:
- 0.0
x102:
- 0.0
x103:
- 0.0
x104:
- 0.0
x105:
- 0.0
x106:
- 0.0
x107:
- 0.0
x108:
- 0.0
x109:
- 0.0
x11:
- 0.0
x110:
- 0.0
x111:
- 0.0
x112:
- 0.0
x113:
- 0.0
x114:
- 0.0
x115:
- 0.0
x116:
- 0.0
x117:
- 0.0
x118:
- 0.0
x119:
- 0.0
x12:
- 0.0
x120:
- 0.0
x121:
- 0.0
x122:
- 0.0
x123:
- 0.0
x124:
- 0.0
x125:
- 0.0
x126:
- 0.0
x127:
- 0.0
x128:
- 0.0
x129:
- 0.0
x13:
- 0.0
x130:
- 0.0
x131:
- 0.0
x132:
- 0.0
x133:
- 0.0
x134:
- 0.0
x135:
- 0.0
x136:
- 0.0
x137:
- 0.0
x138:
- 0.0
x139:
- 0.0
x14:
- 0.0
x140:
- 0.0
x141:
- 0.0
x142:
- 0.0
x143:
- 0.0
x144:
- 0.0
x145:
- 0.0
x146:
- 0.0
x147:
- 0.0
x148:
- 0.0
x149:
- 0.0
x15:
- 0.0
x150:
- 0.0
x151:
- 0.0
x152:
- 0.0
x153:
- 0.0
x154:
- 0.0
x155:
- 0.0
x156:
- 0.0
x157:
- 0.0
x158:
- 0.0
x159:
- 0.0
x16:
- 0.0
x160:
- 0.0
x161:
- 0.0
x162:
- 0.0
x163:
- 0.0
x164:
- 0.0
x165:
- 0.0
x166:
- 0.0
x167:
- 0.0
x168:
- 0.0
x169:
- 0.0
x17:
- 0.0
x170:
- 0.0
x171:
- 0.0
x172:
- 0.0
x173:
- 0.0
x174:
- 0.0
x175:
- 0.0
x176:
- 0.0
x177:
- 0.0
x178:
- 0.0
x179:
- 0.0
x18:
- 0.0
x180:
- 0.0
x181:
- 0.0
x182:
- 0.0
x183:
- 0.0
x184:
- 0.0
x185:
- 0.0
x186:
- 0.0
x187:
- 0.0
x188:
- 0.0
x189:
- 0.0
x19:
- 0.0
x190:
- 0.0
x191:
- 0.0
x192:
- 0.0
x193:
- 0.0
x194:
- 0.0
x195:
- 0.0
x196:
- 0.0
x197:
- 0.0
x198:
- 0.0
x199:
- 0.0
x2:
- 0.0
x20:
- 0.0
x200:
- 0.0
x201:
- 0.0
x202:
- 0.0
x203:
- 0.0
x204:
- 0.0
x205:
- 0.0
x206:
- 0.0
x207:
- 0.0
x208:
- 0.0
x209:
- 0.0
x21:
- 0.0
x210:
- 0.0
x211:
- 0.0
x212:
- 0.0
x213:
- 0.0
x214:
- 0.0
x215:
- 0.0
x216:
- 0.0
x217:
- 0.0
x218:
- 0.0
x219:
- 0.0
x22:
- 0.0
x220:
- 0.0
x221:
- 0.0
x222:
- 0.0
x223:
- 0.0
x224:
- 0.0
x225:
- 0.0
x226:
- 0.0
x227:
- 0.0
x228:
- 0.0
x229:
- 0.0
x23:
- 0.0
x230:
- 0.0
x231:
- 0.0
x232:
- 0.0
x233:
- 0.0
x234:
- 0.0
x235:
- 0.0
x236:
- 0.0
x237:
- 0.0
x238:
- 0.0
x239:
- 0.0
x24:
- 0.0
x240:
- 0.0
x241:
- 0.0
x242:
- 0.0
x243:
- 0.0
x244:
- 0.0
x245:
- 0.0
x246:
- 0.0
x247:
- 0.0
x248:
- 0.0
x249:
- 0.0
x25:
- 0.0
x250:
- 0.0
x251:
- 0.0
x252:
- 0.0
x253:
- 0.0
x254:
- 0.0
x255:
- 0.0
x256:
- 0.0
x257:
- 0.0
x258:
- 0.0
x259:
- 0.0
x26:
- 0.0
x260:
- 0.0
x261:
- 0.0
x262:
- 0.0
x263:
- 0.0
x264:
- 0.0
x265:
- 0.0
x266:
- 0.0
x267:
- 0.0
x268:
- 0.0
x269:
- 0.0
x27:
- 0.0
x270:
- 0.0
x271:
- 0.0
x272:
- 0.0
x273:
- 0.0
x274:
- 0.0
x275:
- 0.0
x276:
- 0.0
x277:
- 0.0
x278:
- 0.0
x279:
- 0.0
x28:
- 0.0
x280:
- 0.0
x281:
- 0.0
x282:
- 0.0
x283:
- 0.0
x284:
- 0.0
x285:
- 0.0
x286:
- 0.0
x287:
- 0.0
x288:
- 0.0
x289:
- 0.0
x29:
- 0.0
x290:
- 0.0
x291:
- 0.0
x292:
- 0.0
x293:
- 0.0
x294:
- 0.0
x295:
- 0.0
x296:
- 0.0
x297:
- 0.0
x298:
- 0.0
x299:
- 0.0
x3:
- 0.0
x30:
- 0.0
x300:
- 0.0
x301:
- 0.0
x302:
- 0.0
x303:
- 0.0
x304:
- 0.0
x305:
- 0.0
x306:
- 0.0
x307:
- 0.0
x308:
- 0.0
x309:
- 0.0
x31:
- 0.0
x310:
- 0.0
x311:
- 0.0
x312:
- 0.0
x313:
- 0.0
x314:
- 0.0
x315:
- 0.0
x316:
- 0.0
x317:
- 0.0
x318:
- 0.0
x319:
- 0.0
x32:
- 0.0
x320:
- 0.0
x321:
- 0.0
x322:
- 0.0
x323:
- 0.0
x324:
- 0.0
x325:
- 0.0
x326:
- 0.0
x327:
- 0.0
x328:
- 0.0
x329:
- 0.0
x33:
- 0.0
x330:
- 0.0
x331:
- 0.0
x332:
- 0.0
x333:
- 0.0
x334:
- 0.0
x335:
- 0.0
x336:
- 0.0
x337:
- 0.0
x338:
- 0.0
x339:
- 0.0
x34:
- 0.0
x340:
- 0.0
x341:
- 0.0
x342:
- 0.0
x343:
- 0.0
x344:
- 0.0
x345:
- 0.0
x346:
- 0.0
x347:
- 0.0
x348:
- 0.0
x349:
- 0.0
x35:
- 0.0
x350:
- 0.0
x351:
- 0.0
x352:
- 0.0
x353:
- 0.0
x354:
- 0.0
x355:
- 0.0
x356:
- 0.0
x357:
- 0.0
x358:
- 0.0
x359:
- 0.0
x36:
- 0.0
x360:
- 0.0
x361:
- 0.0
x362:
- 0.0
x363:
- 0.0
x364:
- 0.0
x365:
- 0.0
x366:
- 0.0
x367:
- 0.0
x368:
- 0.0
x369:
- 0.0
x37:
- 0.0
x370:
- 0.0
x371:
- 0.0
x372:
- 0.0
x373:
- 0.0
x374:
- 0.0
x375:
- 0.0
x376:
- 0.0
x377:
- 0.0
x378:
- 0.0
x379:
- 0.0
x38:
- 0.0
x380:
- 0.0
x381:
- 0.0
x382:
- 0.0
x383:
- 0.0
x384:
- 0.0
x385:
- 0.0
x386:
- 0.0
x387:
- 0.0
x388:
- 0.0
x389:
- 0.0
x39:
- 0.0
x390:
- 0.0
x391:
- 0.0
x392:
- 0.0
x393:
- 0.0
x394:
- 0.0
x395:
- 0.0
x396:
- 0.0
x397:
- 0.0
x398:
- 0.0
x399:
- 0.0
x4:
- 0.0
x40:
- 0.0
x400:
- 0.0
x401:
- 0.0
x402:
- 0.0
x403:
- 0.0
x404:
- 0.0
x405:
- 0.0
x406:
- 0.0
x407:
- 0.0
x408:
- 0.0
x409:
- 0.0
x41:
- 0.0
x410:
- 0.0
x411:
- 0.0
x412:
- 0.0
x413:
- 0.0
x414:
- 0.0
x415:
- 0.0
x416:
- 0.0
x417:
- 0.0
x418:
- 0.0
x419:
- 0.0
x42:
- 0.0
x420:
- 0.0
x421:
- 0.0
x422:
- 0.0
x423:
- 0.0
x424:
- 0.0
x425:
- 0.0
x426:
- 0.0
x427:
- 0.0
x428:
- 0.0
x429:
- 0.0
x43:
- 0.0
x430:
- 0.0
x431:
- 0.0
x432:
- 0.0
x433:
- 0.0
x434:
- 0.0
x435:
- 0.0
x436:
- 0.0
x437:
- 0.0
x438:
- 0.0
x439:
- 0.0
x44:
- 0.0
x440:
- 0.0
x441:
- 0.0
x442:
- 0.0
x443:
- 0.0
x444:
- 0.0
x445:
- 0.0
x446:
- 0.0
x447:
- 0.0
x448:
- 0.0
x449:
- 0.0
x45:
- 0.0
x450:
- 0.0
x451:
- 0.0
x452:
- 0.0
x453:
- 0.0
x454:
- 0.0
x455:
- 0.0
x456:
- 0.0
x457:
- 0.0
x458:
- 0.0
x459:
- 0.0
x46:
- 0.0
x460:
- 0.0
x461:
- 0.0
x462:
- 0.0
x463:
- 0.0
x464:
- 0.0
x465:
- 0.0
x466:
- 0.0
x467:
- 0.0
x468:
- 0.0
x469:
- 0.0
x47:
- 0.0
x470:
- 0.0
x471:
- 0.0
x472:
- 0.0
x473:
- 0.0
x474:
- 0.0
x475:
- 0.0
x476:
- 0.0
x477:
- 0.0
x478:
- 0.0
x479:
- 0.0
x48:
- 0.0
x480:
- 0.0
x481:
- 0.0
x482:
- 0.0
x483:
- 0.0
x484:
- 0.0
x485:
- 0.0
x486:
- 0.0
x487:
- 0.0
x488:
- 0.0
x489:
- 0.0
x49:
- 0.0
x490:
- 0.0
x491:
- 0.0
x492:
- 0.0
x493:
- 0.0
x494:
- 0.0
x495:
- 0.0
x496:
- 0.0
x497:
- 0.0
x498:
- 0.0
x499:
- 0.0
x5:
- 0.0
x50:
- 0.0
x500:
- 0.0
x501:
- 0.0
x502:
- 0.0
x503:
- 0.0
x504:
- 0.0
x505:
- 0.0
x506:
- 0.0
x507:
- 0.0
x508:
- 0.0
x509:
- 0.0
x51:
- 0.0
x510:
- 0.0
x511:
- 0.0
x512:
- 0.0
x513:
- 0.0
x514:
- 0.0
x515:
- 0.0
x516:
- 0.0
x517:
- 0.0
x518:
- 0.0
x519:
- 0.0
x52:
- 0.0
x520:
- 0.0
x521:
- 0.0
x522:
- 0.0
x523:
- 0.0
x524:
- 0.0
x525:
- 0.0
x526:
- 0.0
x527:
- 0.0
x528:
- 0.0
x529:
- 0.0
x53:
- 0.0
x530:
- 0.0
x531:
- 0.0
x532:
- 0.0
x533:
- 0.0
x534:
- 0.0
x535:
- 0.0
x536:
- 0.0
x537:
- 0.0
x538:
- 0.0
x539:
- 0.0
x54:
- 0.0
x540:
- 0.0
x541:
- 0.0
x542:
- 0.0
x543:
- 0.0
x544:
- 0.0
x545:
- 0.0
x546:
- 0.0
x547:
- 0.0
x548:
- 0.0
x549:
- 0.0
x55:
- 0.0
x550:
- 0.0
x551:
- 0.0
x552:
- 0.0
x553:
- 0.0
x554:
- 0.0
x555:
- 0.0
x556:
- 0.0
x557:
- 0.0
x558:
- 0.0
x559:
- 0.0
x56:
- 0.0
x560:
- 0.0
x561:
- 0.0
x562:
- 0.0
x563:
- 0.0
x564:
- 0.0
x565:
- 0.0
x566:
- 0.0
x567:
- 0.0
x568:
- 0.0
x569:
- 0.0
x57:
- 0.0
x570:
- 0.0
x571:
- 0.0
x572:
- 0.0
x573:
- 0.0
x574:
- 0.0
x575:
- 0.0
x576:
- 0.0
x577:
- 0.0
x578:
- 0.0
x579:
- 0.0
x58:
- 0.0
x580:
- 0.0
x581:
- 0.0
x582:
- 0.0
x583:
- 0.0
x584:
- 0.0
x585:
- 0.0
x586:
- 0.0
x587:
- 0.0
x588:
- 0.0
x589:
- 0.0
x59:
- 0.0
x590:
- 0.0
x591:
- 0.0
x592:
- 0.0
x593:
- 0.0
x594:
- 0.0
x595:
- 0.0
x596:
- 0.0
x597:
- 0.0
x598:
- 0.0
x599:
- 0.0
x6:
- 0.0
x60:
- 0.0
x600:
- 0.0
x601:
- 0.0
x602:
- 0.0
x603:
- 0.0
x604:
- 0.0
x605:
- 0.0
x606:
- 0.0
x607:
- 0.0
x608:
- 0.0
x609:
- 0.0
x61:
- 0.0
x610:
- 0.0
x611:
- 0.0
x612:
- 0.0
x613:
- 0.0
x614:
- 0.0
x615:
- 0.0
x616:
- 0.0
x617:
- 0.0
x618:
- 0.0
x619:
- 0.0
x62:
- 0.0
x620:
- 0.0
x621:
- 0.0
x622:
- 0.0
x623:
- 0.0
x624:
- 0.0
x625:
- 0.0
x626:
- 0.0
x627:
- 0.0
x628:
- 0.0
x629:
- 0.0
x63:
- 0.0
x630:
- 0.0
x631:
- 0.0
x632:
- 0.0
x633:
- 0.0
x634:
- 0.0
x635:
- 0.0
x636:
- 0.0
x637:
- 0.0
x638:
- 0.0
x639:
- 0.0
x64:
- 0.0
x640:
- 0.0
x641:
- 0.0
x642:
- 0.0
x643:
- 0.0
x644:
- 0.0
x645:
- 0.0
x646:
- 0.0
x647:
- 0.0
x648:
- 0.0
x649:
- 0.0
x65:
- 0.0
x650:
- 0.0
x651:
- 0.0
x652:
- 0.0
x653:
- 0.0
x654:
- 0.0
x655:
- 0.0
x656:
- 0.0
x657:
- 0.0
x658:
- 0.0
x659:
- 0.0
x66:
- 0.0
x660:
- 0.0
x661:
- 0.0
x662:
- 0.0
x663:
- 0.0
x664:
- 0.0
x665:
- 0.0
x666:
- 0.0
x667:
- 0.0
x668:
- 0.0
x669:
- 0.0
x67:
- 0.0
x670:
- 0.0
x671:
- 0.0
x672:
- 0.0
x673:
- 0.0
x674:
- 0.0
x675:
- 0.0
x676:
- 0.0
x677:
- 0.0
x678:
- 0.0
x679:
- 0.0
x68:
- 0.0
x680:
- 0.0
x681:
- 0.0
x682:
- 0.0
x683:
- 0.0
x684:
- 0.0
x685:
- 0.0
x686:
- 0.0
x687:
- 0.0
x688:
- 0.0
x689:
- 0.0
x69:
- 0.0
x690:
- 0.0
x691:
- 0.0
x692:
- 0.0
x693:
- 0.0
x694:
- 0.0
x695:
- 0.0
x696:
- 0.0
x697:
- 0.0
x698:
- 0.0
x699:
- 0.0
x7:
- 0.0
x70:
- 0.0
x700:
- 0.0
x701:
- 0.0
x702:
- 0.0
x703:
- 0.0
x704:
- 0.0
x705:
- 0.0
x706:
- 0.0
x707:
- 0.0
x708:
- 0.0
x709:
- 0.0
x71:
- 0.0
x710:
- 0.0
x711:
- 0.0
x712:
- 0.0
x713:
- 0.0
x714:
- 0.0
x715:
- 0.0
x716:
- 0.0
x717:
- 0.0
x718:
- 0.0
x719:
- 0.0
x72:
- 0.0
x720:
- 0.0
x721:
- 0.0
x722:
- 0.0
x723:
- 0.0
x724:
- 0.0
x725:
- 0.0
x726:
- 0.0
x727:
- 0.0
x728:
- 0.0
x729:
- 0.0
x73:
- 0.0
x730:
- 0.0
x731:
- 0.0
x732:
- 0.0
x733:
- 0.0
x734:
- 0.0
x735:
- 0.0
x736:
- 0.0
x737:
- 0.0
x738:
- 0.0
x739:
- 0.0
x74:
- 0.0
x740:
- 0.0
x741:
- 0.0
x742:
- 0.0
x743:
- 0.0
x744:
- 0.0
x745:
- 0.0
x746:
- 0.0
x747:
- 0.0
x748:
- 0.0
x749:
- 0.0
x75:
- 0.0
x750:
- 0.0
x751:
- 0.0
x752:
- 0.0
x753:
- 0.0
x754:
- 0.0
x755:
- 0.0
x756:
- 0.0
x757:
- 0.0
x758:
- 0.0
x759:
- 0.0
x76:
- 0.0
x760:
- 0.0
x761:
- 0.0
x762:
- 0.0
x763:
- 0.0
x764:
- 0.0
x765:
- 0.0
x766:
- 0.0
x767:
- 0.0
x77:
- 0.0
x78:
- 0.0
x79:
- 0.0
x8:
- 0.0
x80:
- 0.0
x81:
- 0.0
x82:
- 0.0
x83:
- 0.0
x84:
- 0.0
x85:
- 0.0
x86:
- 0.0
x87:
- 0.0
x88:
- 0.0
x89:
- 0.0
x9:
- 0.0
x90:
- 0.0
x91:
- 0.0
x92:
- 0.0
x93:
- 0.0
x94:
- 0.0
x95:
- 0.0
x96:
- 0.0
x97:
- 0.0
x98:
- 0.0
x99:
- 0.0
---
# Model description
一个简易说的人脸识别baseline,使用openai/clip-vit-base-patch16 + LDA的策略
## Intended uses & limitations
整体需要配合github对应的代码使用
## Training Procedure
[More Information Needed]
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|----------------------|---------|
| covariance_estimator | |
| n_components | 512 |
| priors | |
| shrinkage | |
| solver | svd |
| store_covariance | False |
| tol | 0.0001 |
</details>
### Model Plot
<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LinearDiscriminantAnalysis(n_components=512)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">LinearDiscriminantAnalysis</label><div class="sk-toggleable__content"><pre>LinearDiscriminantAnalysis(n_components=512)</pre></div></div></div></div></div>
## Evaluation Results
[More Information Needed]
# How to Get Started with the Model
[More Information Needed]
# Model Card Authors
Cheng Li(https://github.com/LC1332)
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
@inproceedings{wang2018devil,
title={The devil of face recognition is in the noise},
author={Wang, Fei and Chen, Liren and Li, Cheng and Huang, Shiyao and Chen, Yanjie and Qian, Chen and Loy, Chen Change},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
pages={765--780},
year={2018}
}