|
--- |
|
tags: |
|
- Conversational |
|
--- |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("sillon/DialoGPT-small-HospitalBot") |
|
model = AutoModelForCausalLM.from_pretrained("sillon/DialoGPT-small-HospitalBot") |
|
|
|
# Let's chat for 5 lines |
|
for step in range(5): |
|
# encode the new user input, add the eos_token and return a tensor in Pytorch |
|
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') |
|
|
|
# append the new user input tokens to the chat history |
|
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids |
|
|
|
# generated a response while limiting the total chat history to 1000 tokens, |
|
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) |
|
|
|
# pretty print last ouput tokens from bot |
|
print("HospitalBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) |
|
``` |