led-risalah_data_v9 / README.md
silmi224's picture
Training complete
0c12d11 verified
metadata
base_model: silmi224/finetune-led-35000
tags:
  - summarization
  - generated_from_trainer
model-index:
  - name: led-risalah_data_v9
    results: []

led-risalah_data_v9

This model is a fine-tuned version of silmi224/finetune-led-35000 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6418
  • Rouge1 Precision: 0.6262
  • Rouge1 Recall: 0.3099
  • Rouge1 Fmeasure: 0.4143

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Precision Rouge1 Recall Rouge1 Fmeasure
1.2018 0.9714 17 1.4789 0.5782 0.2807 0.3761
1.0123 2.0 35 1.4305 0.5931 0.2892 0.3876
0.8845 2.9714 52 1.4693 0.6327 0.3088 0.4148
0.705 4.0 70 1.4903 0.6263 0.3052 0.4096
0.6323 4.9714 87 1.5086 0.6167 0.3052 0.4075
0.5926 6.0 105 1.5386 0.6238 0.3031 0.4072
0.5149 6.9714 122 1.5742 0.6308 0.3035 0.4096
0.4324 8.0 140 1.6112 0.6188 0.3083 0.411
0.3748 8.9714 157 1.6382 0.6262 0.3097 0.4138
0.4033 9.7143 170 1.6418 0.6262 0.3099 0.4143

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1