silviacamplani's picture
Training in progress epoch 1
4a4b2eb
|
raw
history blame
2.08 kB
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: silviacamplani/distilbert-base-uncased-finetuned-ner-conll2003
    results: []

silviacamplani/distilbert-base-uncased-finetuned-ner-conll2003

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0516
  • Validation Loss: 0.0592
  • Train Precision: 0.9147
  • Train Recall: 0.9313
  • Train F1: 0.9229
  • Train Accuracy: 0.9832
  • Epoch: 1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
0.1958 0.0662 0.9016 0.9142 0.9078 0.9813 0
0.0516 0.0592 0.9147 0.9313 0.9229 0.9832 1

Framework versions

  • Transformers 4.20.1
  • TensorFlow 2.6.4
  • Datasets 2.1.0
  • Tokenizers 0.12.1