silviacamplani's picture
End of training
88f5f4c
metadata
tags:
  - generated_from_keras_callback
model-index:
  - name: silviacamplani/distilbert-finetuned-dapt_tapt-ner-ai
    results: []

silviacamplani/distilbert-finetuned-dapt_tapt-ner-ai

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.8595
  • Validation Loss: 0.8604
  • Train Precision: 0.3378
  • Train Recall: 0.3833
  • Train F1: 0.3591
  • Train Accuracy: 0.7860
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 350, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
2.5333 1.7392 0.0 0.0 0.0 0.6480 0
1.5890 1.4135 0.0 0.0 0.0 0.6480 1
1.3635 1.2627 0.0 0.0 0.0 0.6483 2
1.2366 1.1526 0.1538 0.0920 0.1151 0.6921 3
1.1296 1.0519 0.2147 0.2147 0.2147 0.7321 4
1.0374 0.9753 0.2743 0.2981 0.2857 0.7621 5
0.9639 0.9202 0.3023 0.3373 0.3188 0.7693 6
0.9097 0.8829 0.3215 0.3714 0.3447 0.7795 7
0.8756 0.8635 0.3280 0.3850 0.3542 0.7841 8
0.8595 0.8604 0.3378 0.3833 0.3591 0.7860 9

Framework versions

  • Transformers 4.20.1
  • TensorFlow 2.6.4
  • Datasets 2.1.0
  • Tokenizers 0.12.1