silviacamplani/distilbert-finetuned-tapt-ner-ai
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.9093
- Validation Loss: 0.9177
- Train Precision: 0.3439
- Train Recall: 0.3697
- Train F1: 0.3563
- Train Accuracy: 0.7697
- Epoch: 9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 350, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
2.5750 | 1.7754 | 0.0 | 0.0 | 0.0 | 0.6480 | 0 |
1.6567 | 1.4690 | 0.0 | 0.0 | 0.0 | 0.6480 | 1 |
1.3888 | 1.2847 | 0.0 | 0.0 | 0.0 | 0.6480 | 2 |
1.2569 | 1.1744 | 0.0526 | 0.0221 | 0.0312 | 0.6751 | 3 |
1.1536 | 1.0884 | 0.2088 | 0.1704 | 0.1876 | 0.7240 | 4 |
1.0722 | 1.0281 | 0.2865 | 0.2641 | 0.2748 | 0.7431 | 5 |
1.0077 | 0.9782 | 0.3151 | 0.3135 | 0.3143 | 0.7553 | 6 |
0.9582 | 0.9437 | 0.3254 | 0.3492 | 0.3369 | 0.7661 | 7 |
0.9268 | 0.9242 | 0.3381 | 0.3595 | 0.3485 | 0.7689 | 8 |
0.9093 | 0.9177 | 0.3439 | 0.3697 | 0.3563 | 0.7697 | 9 |
Framework versions
- Transformers 4.20.1
- TensorFlow 2.6.4
- Datasets 2.1.0
- Tokenizers 0.12.1
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.