silviacamplani's picture
End of training
239381f
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: silviacamplani/distilbert-finetuned-tapt-ner-music
    results: []

silviacamplani/distilbert-finetuned-tapt-ner-music

This model is a fine-tuned version of silviacamplani/distilbert-finetuned-tapt-lm-ai on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.6932
  • Validation Loss: 0.7886
  • Train Precision: 0.5347
  • Train Recall: 0.5896
  • Train F1: 0.5608
  • Train Accuracy: 0.8078
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 370, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
2.7047 2.0137 0.0 0.0 0.0 0.5482 0
1.7222 1.5112 0.0 0.0 0.0 0.5561 1
1.3564 1.2817 0.2382 0.2592 0.2483 0.6686 2
1.1641 1.1378 0.3605 0.3816 0.3708 0.7043 3
1.0188 1.0187 0.4583 0.4950 0.4760 0.7409 4
0.8983 0.9267 0.4946 0.5383 0.5155 0.7638 5
0.8117 0.8649 0.5152 0.5653 0.5391 0.7816 6
0.7550 0.8206 0.5283 0.5806 0.5532 0.8007 7
0.7132 0.7964 0.5326 0.5887 0.5592 0.8049 8
0.6932 0.7886 0.5347 0.5896 0.5608 0.8078 9

Framework versions

  • Transformers 4.20.1
  • TensorFlow 2.6.4
  • Datasets 2.1.0
  • Tokenizers 0.12.1