silviacamplani's picture
End of training
9fa1ba8
|
raw
history blame
2.06 kB
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: silviacamplani/distilbert-uncase-direct-finetuning-ai-ner
    results: []

silviacamplani/distilbert-uncase-direct-finetuning-ai-ner

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.6021
  • Validation Loss: 1.6163
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 60, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Epoch
3.2752 3.0320 0
2.7791 2.5293 1
2.2674 2.0340 2
1.8952 1.8222 3
1.7933 1.7669 4
1.7352 1.7158 5
1.6868 1.6706 6
1.6242 1.6412 7
1.5899 1.6234 8
1.6021 1.6163 9

Framework versions

  • Transformers 4.20.1
  • TensorFlow 2.6.4
  • Datasets 2.1.0
  • Tokenizers 0.12.1