gemma-7b-borpo / README.md
silviasapora's picture
End of training
799de5b verified
metadata
library_name: transformers
license: gemma
base_model: google/gemma-7b
tags:
  - alignment-handbook
  - trl
  - orpo
  - generated_from_trainer
  - trl
  - orpo
  - generated_from_trainer
datasets:
  - argilla/dpo-mix-7k
model-index:
  - name: gemma-7b-borpo
    results: []

gemma-7b-borpo

This model is a fine-tuned version of google/gemma-7b on the argilla/dpo-mix-7k dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5984
  • Rewards/chosen: -0.0575
  • Rewards/rejected: -0.0699
  • Rewards/accuracies: 0.5899
  • Rewards/margins: 0.0124
  • Logps/rejected: -1.3977
  • Logps/chosen: -1.1506
  • Logits/rejected: 270.9628
  • Logits/chosen: 299.8625
  • Nll Loss: 1.5312
  • Log Odds Ratio: -0.6761
  • Log Odds Chosen: 0.3679

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
1.4516 0.9968 157 1.4765 -0.0513 -0.0577 0.5468 0.0064 -1.1547 -1.0260 293.8872 321.9495 1.4282 -0.6924 0.1911
1.0587 2.0 315 1.4250 -0.0502 -0.0595 0.5468 0.0093 -1.1904 -1.0035 296.0850 323.6012 1.3729 -0.6901 0.2723
0.5897 2.9905 471 1.5984 -0.0575 -0.0699 0.5899 0.0124 -1.3977 -1.1506 270.9628 299.8625 1.5312 -0.6761 0.3679

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1