bart-base for Extractive QA
This model is a fine-tuned version of facebook/bart-base on the SQuAD2.0 dataset.
Overview
Language model: bart-base
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Infrastructure: 1x NVIDIA 3070
Model Usage
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "sjrhuschlee/bart-base-squad2"
# a) Using pipelines
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
qa_input = {
'question': 'Where do I live?',
'context': 'My name is Sarah and I live in London'
}
res = nlp(qa_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
Metrics
# Squad v2
{
"eval_HasAns_exact": 76.45074224021593,
"eval_HasAns_f1": 82.88605283171232,
"eval_HasAns_total": 5928,
"eval_NoAns_exact": 74.01177460050462,
"eval_NoAns_f1": 74.01177460050462,
"eval_NoAns_total": 5945,
"eval_best_exact": 75.23793481007327,
"eval_best_exact_thresh": 0.0,
"eval_best_f1": 78.45098300230696,
"eval_best_f1_thresh": 0.0,
"eval_exact": 75.22951233892024,
"eval_f1": 78.44256053115387,
"eval_runtime": 131.875,
"eval_samples": 11955,
"eval_samples_per_second": 90.654,
"eval_steps_per_second": 3.784,
"eval_total": 11873
}
# Squad
{
"eval_exact_match": 83.40586565752129,
"eval_f1": 90.37706849113668,
"eval_runtime": 117.2093,
"eval_samples": 10619,
"eval_samples_per_second": 90.599,
"eval_steps_per_second": 3.78
}
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- max_seq_length 512
- doc_stride 128
- learning_rate: 2e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 96
- optimizer: Adam8Bit with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4.0
- gradient_checkpointing: True
- tf32: True
Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for sjrhuschlee/bart-base-squad2
Base model
facebook/bart-baseDatasets used to train sjrhuschlee/bart-base-squad2
Evaluation results
- Exact Match on squad_v2validation set self-reported75.223
- F1 on squad_v2validation set self-reported78.443
- Exact Match on squadvalidation set self-reported83.406
- F1 on squadvalidation set self-reported90.377