Edit model card

bart-base for Extractive QA

This model is a fine-tuned version of facebook/bart-base on the SQuAD2.0 dataset.

Overview

Language model: bart-base
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Infrastructure: 1x NVIDIA 3070

Model Usage

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "sjrhuschlee/bart-base-squad2"
# a) Using pipelines
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
qa_input = {
'question': 'Where do I live?',
'context': 'My name is Sarah and I live in London'
}
res = nlp(qa_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

Metrics

# Squad v2
{
    "eval_HasAns_exact": 76.45074224021593,
    "eval_HasAns_f1": 82.88605283171232,
    "eval_HasAns_total": 5928,
    "eval_NoAns_exact": 74.01177460050462,
    "eval_NoAns_f1": 74.01177460050462,
    "eval_NoAns_total": 5945,
    "eval_best_exact": 75.23793481007327,
    "eval_best_exact_thresh": 0.0,
    "eval_best_f1": 78.45098300230696,
    "eval_best_f1_thresh": 0.0,
    "eval_exact": 75.22951233892024,
    "eval_f1": 78.44256053115387,
    "eval_runtime": 131.875,
    "eval_samples": 11955,
    "eval_samples_per_second": 90.654,
    "eval_steps_per_second": 3.784,
    "eval_total": 11873
}

# Squad
{
    "eval_exact_match": 83.40586565752129,
    "eval_f1": 90.37706849113668,
    "eval_runtime": 117.2093,
    "eval_samples": 10619,
    "eval_samples_per_second": 90.599,
    "eval_steps_per_second": 3.78
}

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • max_seq_length 512
  • doc_stride 128
  • learning_rate: 2e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 96
  • optimizer: Adam8Bit with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4.0
  • gradient_checkpointing: True
  • tf32: True

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
8
Safetensors
Model size
139M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sjrhuschlee/bart-base-squad2

Base model

facebook/bart-base
Finetuned
(364)
this model

Datasets used to train sjrhuschlee/bart-base-squad2

Evaluation results