smartgmin's picture
Upload TFViTForImageClassification
4efb3c1 verified
|
raw
history blame
3.63 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_keras_callback
model-index:
  - name: Entrnal_5class_agumm_last_newV6_model
    results: []

Entrnal_5class_agumm_last_newV6_model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0410
  • Train Accuracy: 0.9612
  • Train Top-3-accuracy: 0.9962
  • Validation Loss: 0.3703
  • Validation Accuracy: 0.9623
  • Validation Top-3-accuracy: 0.9963
  • Epoch: 12

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1209, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
1.0109 0.5898 0.8913 0.5771 0.7468 0.9576 0
0.4103 0.7997 0.9708 0.4029 0.8329 0.9786 1
0.2249 0.8581 0.9827 0.3677 0.8769 0.9857 2
0.1584 0.8905 0.9877 0.3730 0.9010 0.9893 3
0.1164 0.9097 0.9904 0.3957 0.9169 0.9913 4
0.0841 0.9231 0.9920 0.3896 0.9285 0.9927 5
0.0676 0.9331 0.9932 0.3718 0.9373 0.9937 6
0.0561 0.9408 0.9941 0.3701 0.9440 0.9944 7
0.0500 0.9468 0.9947 0.3691 0.9493 0.9949 8
0.0461 0.9516 0.9952 0.3698 0.9535 0.9954 9
0.0435 0.9554 0.9956 0.3694 0.9570 0.9958 10
0.0418 0.9585 0.9959 0.3705 0.9598 0.9961 11
0.0410 0.9612 0.9962 0.3703 0.9623 0.9963 12

Framework versions

  • Transformers 4.44.2
  • TensorFlow 2.15.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1