smartgmin's picture
Upload TFViTForImageClassification
f0961af verified
|
raw
history blame
2.85 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_keras_callback
model-index:
  - name: Entrnal_eyes_data_6_true_agoiment211_model
    results: []

Entrnal_eyes_data_6_true_agoiment211_model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1455
  • Train Accuracy: 0.9282
  • Train Top-3-accuracy: 0.9908
  • Validation Loss: 0.3319
  • Validation Accuracy: 0.9322
  • Validation Top-3-accuracy: 0.9914
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 434, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
1.1623 0.5608 0.8521 0.7419 0.7200 0.9394 0
0.5255 0.7824 0.9588 0.4509 0.8190 0.9701 1
0.3218 0.8454 0.9759 0.3839 0.8644 0.9803 2
0.2230 0.8794 0.9830 0.3494 0.8923 0.9852 3
0.1755 0.9022 0.9868 0.3445 0.9104 0.9882 4
0.1539 0.9173 0.9892 0.3343 0.9231 0.9901 5
0.1455 0.9282 0.9908 0.3319 0.9322 0.9914 6

Framework versions

  • Transformers 4.44.2
  • TensorFlow 2.15.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1