See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: microsoft/Phi-3-mini-4k-instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 6c3ac0ead1090ad2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6c3ac0ead1090ad2_train_data.json
type:
field_input: prefix
field_instruction: problem
field_output: full_solution
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: sn56/25cf62f2-d032-4bc3-8cc1-32e591405fce
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 8
mlflow_experiment_name: /tmp/6c3ac0ead1090ad2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
seed: 3491072646
sequence_len: 1024
shuffle: true
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: e0ss
wandb_runid: null
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
25cf62f2-d032-4bc3-8cc1-32e591405fce
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3801
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 3491072646
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0025 | 1 | 0.4909 |
1.8792 | 0.0328 | 13 | 0.4459 |
1.6599 | 0.0656 | 26 | 0.4084 |
1.5772 | 0.0984 | 39 | 0.3947 |
1.5715 | 0.1312 | 52 | 0.3886 |
1.5352 | 0.1640 | 65 | 0.3850 |
1.5513 | 0.1968 | 78 | 0.3829 |
1.5586 | 0.2297 | 91 | 0.3817 |
1.5188 | 0.2625 | 104 | 0.3809 |
1.5139 | 0.2953 | 117 | 0.3804 |
1.4679 | 0.3281 | 130 | 0.3802 |
1.4968 | 0.3609 | 143 | 0.3801 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for sn56/25cf62f2-d032-4bc3-8cc1-32e591405fce
Base model
microsoft/Phi-3-mini-4k-instruct