Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Henrychur/MMed-Llama-3-8B-EnIns
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 67619dafda887b7e_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/67619dafda887b7e_train_data.json
  type:
    field_input: context
    field_instruction: question
    field_output: final_decision
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56/426a3122-ad40-4adc-908f-2da4eb756616
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/67619dafda887b7e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 426a3122-ad40-4adc-908f-2da4eb756616
wandb_project: god
wandb_run: ulf6
wandb_runid: 426a3122-ad40-4adc-908f-2da4eb756616
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

426a3122-ad40-4adc-908f-2da4eb756616

This model is a fine-tuned version of Henrychur/MMed-Llama-3-8B-EnIns on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0249

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
12.6025 0.0001 1 12.3238
0.2591 0.0007 9 0.4628
0.1299 0.0014 18 0.0943
0.0473 0.0022 27 0.0450
0.0006 0.0029 36 0.0379
0.0027 0.0036 45 0.0388
0.0184 0.0043 54 0.0284
0.0042 0.0050 63 0.0255
0.0808 0.0057 72 0.0251
0.0013 0.0065 81 0.0259
0.006 0.0072 90 0.0248
0.0003 0.0079 99 0.0249

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56/426a3122-ad40-4adc-908f-2da4eb756616

Adapter
(44)
this model