See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Henrychur/MMed-Llama-3-8B-EnIns
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 04aca996ecd32f7d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/04aca996ecd32f7d_train_data.json
type:
field_input: context
field_instruction: question
field_output: final_decision
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn5601/2991cd9c-b266-40c8-811b-30dfd6e89b83
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/04aca996ecd32f7d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 2991cd9c-b266-40c8-811b-30dfd6e89b83
wandb_project: god
wandb_run: gt3s
wandb_runid: 2991cd9c-b266-40c8-811b-30dfd6e89b83
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true
2991cd9c-b266-40c8-811b-30dfd6e89b83
This model is a fine-tuned version of Henrychur/MMed-Llama-3-8B-EnIns on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1088
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
12.0326 | 0.0000 | 1 | 12.3249 |
12.4453 | 0.0001 | 3 | 11.6343 |
6.8853 | 0.0002 | 6 | 4.2496 |
0.0052 | 0.0004 | 9 | 0.8712 |
1.9453 | 0.0005 | 12 | 0.1916 |
0.3239 | 0.0006 | 15 | 0.1434 |
0.2602 | 0.0007 | 18 | 0.1199 |
0.6821 | 0.0008 | 21 | 0.1454 |
0.0071 | 0.0010 | 24 | 0.0948 |
0.0037 | 0.0011 | 27 | 0.1050 |
0.0039 | 0.0012 | 30 | 0.1088 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Model tree for sn5601/2991cd9c-b266-40c8-811b-30dfd6e89b83
Base model
Henrychur/MMed-Llama-3-8B
Finetuned
Henrychur/MMed-Llama-3-8B-EnIns