Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: heegyu/WizardVicuna-open-llama-3b-v2
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 0ba056ab4aea2163_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/0ba056ab4aea2163_train_data.json
  type:
    field_input: input_role
    field_instruction: target_role
    field_output: target_role_short
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config:
  max_steps: 50
  weight_decay: 0.01
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56a1/681012ad-17b8-4365-810a-9cf00e644424
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/0ba056ab4aea2163_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 70
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 681012ad-17b8-4365-810a-9cf00e644424
wandb_project: god
wandb_run: k3li
wandb_runid: 681012ad-17b8-4365-810a-9cf00e644424
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

681012ad-17b8-4365-810a-9cf00e644424

This model is a fine-tuned version of heegyu/WizardVicuna-open-llama-3b-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
5.8478 0.0013 1 5.8559
5.4022 0.0065 5 5.2092
2.2725 0.0130 10 1.3080
0.2262 0.0195 15 0.1639
0.0172 0.0260 20 0.0119
0.0034 0.0325 25 0.0019
0.0005 0.0390 30 0.0005
0.0002 0.0455 35 0.0003
0.0002 0.0520 40 0.0002
0.0001 0.0586 45 0.0002
0.0001 0.0651 50 0.0001

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
44
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56a1/681012ad-17b8-4365-810a-9cf00e644424

Adapter
(65)
this model