See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f8dd1b9a4074633c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f8dd1b9a4074633c_train_data.json
type:
field_instruction: prompt_hash
field_output: original_dataset_name
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56a2/72e3e03b-51b5-4716-9570-b72ad0323b1d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/f8dd1b9a4074633c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 72e3e03b-51b5-4716-9570-b72ad0323b1d
wandb_project: god
wandb_run: 9bjn
wandb_runid: 72e3e03b-51b5-4716-9570-b72ad0323b1d
warmup_steps: 2
weight_decay: 0.0
xformers_attention: null
72e3e03b-51b5-4716-9570-b72ad0323b1d
This model is a fine-tuned version of MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 34
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0294 | 1 | 7.9644 |
No log | 0.2059 | 7 | 0.2206 |
3.6996 | 0.4118 | 14 | 0.0001 |
0.0005 | 0.6176 | 21 | 0.0000 |
0.0005 | 0.8235 | 28 | 0.0000 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Model tree for sn56a2/72e3e03b-51b5-4716-9570-b72ad0323b1d
Base model
MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4