Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: JackFram/llama-160m
bf16: auto
chat_template: llama3
cosine_min_lr_ratio: 0.1
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
  - ab80a554070cdc53_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/ab80a554070cdc53_train_data.json
  type:
    field_input: rejected
    field_instruction: prompt
    field_output: chosen
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: '{'''':torch.cuda.current_device()}'
do_eval: true
early_stopping_patience: 1
eval_batch_size: 1
eval_sample_packing: false
eval_steps: 25
evaluation_strategy: steps
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 64
gradient_checkpointing: true
group_by_length: true
hub_model_id: sn56a3/1b054327-a6b9-45e0-98ef-2d5fb503dfb8
hub_repo: stevemonite
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 70GiB
max_steps: 1200
micro_batch_size: 1
mlflow_experiment_name: /tmp/ab80a554070cdc53_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
save_strategy: steps
sequence_len: 2048
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: false
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 1b054327-a6b9-45e0-98ef-2d5fb503dfb8
wandb_project: god
wandb_run: e121
wandb_runid: 1b054327-a6b9-45e0-98ef-2d5fb503dfb8
warmup_raio: 0.03
warmup_ratio: 0.03
weight_decay: 0.01
xformers_attention: null

1b054327-a6b9-45e0-98ef-2d5fb503dfb8

This model is a fine-tuned version of JackFram/llama-160m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6708

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 256
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 7
  • training_steps: 263

Training results

Training Loss Epoch Step Validation Loss
3.2672 0.0076 1 3.7875
2.5664 0.1907 25 2.3339
2.0973 0.3813 50 1.9253
1.8979 0.5720 75 1.8216
1.9044 0.7626 100 1.7645
1.8156 0.9533 125 1.7263
1.6741 1.1439 150 1.7033
1.5789 1.3346 175 1.6960
1.6103 1.5253 200 1.6848
1.6016 1.7159 225 1.6764
1.5702 1.9066 250 1.6708

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56a3/1b054327-a6b9-45e0-98ef-2d5fb503dfb8

Adapter
(152)
this model