See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/mistral-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0fa69c3b84e26bfc_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0fa69c3b84e26bfc_train_data.json
type:
field_instruction: tweetAuthor
field_output: tweetText
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: sn56a3/4810eb17-7b5d-44d8-ae30-bfcff0b8aa0a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/0fa69c3b84e26bfc_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: sn56a3/4810eb17
wandb_project: god
wandb_run: tlnr
wandb_runid: sn56a3/4810eb17
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
65beec6b-180b-4caf-9826-d36a39ed9ecd
This model is a fine-tuned version of unsloth/mistral-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.3750
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0013 | 1 | 3.2085 |
12.0838 | 0.0114 | 9 | 2.8099 |
10.6717 | 0.0229 | 18 | 2.5613 |
9.9777 | 0.0343 | 27 | 2.4839 |
10.1125 | 0.0457 | 36 | 2.4474 |
9.6393 | 0.0572 | 45 | 2.4225 |
9.5357 | 0.0686 | 54 | 2.4042 |
9.5391 | 0.0801 | 63 | 2.3923 |
9.4949 | 0.0915 | 72 | 2.3830 |
9.3942 | 0.1029 | 81 | 2.3778 |
9.6449 | 0.1144 | 90 | 2.3755 |
9.4825 | 0.1258 | 99 | 2.3750 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for sn56a3/4810eb17-7b5d-44d8-ae30-bfcff0b8aa0a
Base model
unsloth/mistral-7b