See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Llama-2-13b-64k
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a65657e24ab10169_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a65657e24ab10169_train_data.json
type:
field_input: text
field_instruction: title
field_output: category
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56b2/62720bd2-5fc2-42cf-9d63-232986b215d6
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 75GiB
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/a65657e24ab10169_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 5
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 62720bd2-5fc2-42cf-9d63-232986b215d6
wandb_project: god
wandb_run: 62720bd2-5fc2-42cf-9d63-232986b215d6
wandb_runid: 62720bd2-5fc2-42cf-9d63-232986b215d6
warmup_steps: 5
weight_decay: 0.1
xformers_attention: true
62720bd2-5fc2-42cf-9d63-232986b215d6
This model is a fine-tuned version of NousResearch/Yarn-Llama-2-13b-64k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.5460
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 25
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
29.9648 | 0.0001 | 1 | 8.5247 |
29.0882 | 0.0002 | 3 | 8.5071 |
26.2052 | 0.0003 | 6 | 8.2005 |
29.4909 | 0.0005 | 9 | 6.9785 |
21.833 | 0.0006 | 12 | 5.5870 |
13.4687 | 0.0008 | 15 | 4.6250 |
19.2738 | 0.0009 | 18 | 3.9614 |
17.1181 | 0.0011 | 21 | 3.6350 |
9.9624 | 0.0012 | 24 | 3.5460 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for sn56b2/62720bd2-5fc2-42cf-9d63-232986b215d6
Base model
NousResearch/Yarn-Llama-2-13b-64k