Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Yarn-Llama-2-13b-64k
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - a65657e24ab10169_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/a65657e24ab10169_train_data.json
  type:
    field_input: text
    field_instruction: title
    field_output: category
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56b2/62720bd2-5fc2-42cf-9d63-232986b215d6
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 75GiB
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/a65657e24ab10169_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 5
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 62720bd2-5fc2-42cf-9d63-232986b215d6
wandb_project: god
wandb_run: 62720bd2-5fc2-42cf-9d63-232986b215d6
wandb_runid: 62720bd2-5fc2-42cf-9d63-232986b215d6
warmup_steps: 5
weight_decay: 0.1
xformers_attention: true

62720bd2-5fc2-42cf-9d63-232986b215d6

This model is a fine-tuned version of NousResearch/Yarn-Llama-2-13b-64k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5460

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 25

Training results

Training Loss Epoch Step Validation Loss
29.9648 0.0001 1 8.5247
29.0882 0.0002 3 8.5071
26.2052 0.0003 6 8.2005
29.4909 0.0005 9 6.9785
21.833 0.0006 12 5.5870
13.4687 0.0008 15 4.6250
19.2738 0.0009 18 3.9614
17.1181 0.0011 21 3.6350
9.9624 0.0012 24 3.5460

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56b2/62720bd2-5fc2-42cf-9d63-232986b215d6

Adapter
(22)
this model