See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
datasets:
- data_files:
- e83078cc38b766ea_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e83078cc38b766ea_train_data.json
type:
field_instruction: question_id
field_output: answer_id
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56c2/8f346073-6953-48cb-a851-169c2b300175
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/e83078cc38b766ea_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 8f346073-6953-48cb-a851-169c2b300175
wandb_project: god
wandb_run: bjvm
wandb_runid: 8f346073-6953-48cb-a851-169c2b300175
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
8f346073-6953-48cb-a851-169c2b300175
This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3728
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 16
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.3814 | 0.1818 | 1 | 10.3739 |
10.3794 | 0.3636 | 2 | 10.3738 |
10.3762 | 0.7273 | 4 | 10.3737 |
15.5502 | 1.0909 | 6 | 10.3737 |
10.3356 | 1.4545 | 8 | 10.3735 |
10.411 | 1.8182 | 10 | 10.3732 |
10.3779 | 2.1818 | 12 | 10.3730 |
10.3721 | 2.5455 | 14 | 10.3729 |
10.3801 | 2.9091 | 16 | 10.3728 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 44
Model tree for sn56c2/8f346073-6953-48cb-a851-169c2b300175
Base model
HuggingFaceH4/tiny-random-LlamaForCausalLM