Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Henrychur/MMed-Llama-3-8B-EnIns
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 9f7e08877e4e94ba_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/9f7e08877e4e94ba_train_data.json
  type:
    field_input: context
    field_instruction: question
    field_output: final_decision
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: true
hub_model_id: sn56m2/12d3953b-9dc1-494c-8588-8e1b4979de7d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 74GiB
max_steps: 75
micro_batch_size: 2
mlflow_experiment_name: /tmp/9f7e08877e4e94ba_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2048
special_tokens:
  pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 12d3953b-9dc1-494c-8588-8e1b4979de7d
wandb_project: god
wandb_run: t8nl
wandb_runid: 12d3953b-9dc1-494c-8588-8e1b4979de7d
warmup_ratio: 0.05
weight_decay: 0.01
xformers_attention: true

af6dd40b-32e1-43b1-adfd-8ce14d65d738

This model is a fine-tuned version of Henrychur/MMed-Llama-3-8B-EnIns on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0261

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 3
  • training_steps: 75

Training results

Training Loss Epoch Step Validation Loss
11.8509 0.0003 1 12.3188
0.0476 0.0080 25 0.0345
0.0004 0.0160 50 0.0329
0.0769 0.0239 75 0.0261

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
30
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56m2/12d3953b-9dc1-494c-8588-8e1b4979de7d

Adapter
(44)
this model