See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Llama-2-7b-64k
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 021f9f7742ecff4b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/021f9f7742ecff4b_train_data.json
type:
field_input: solution
field_instruction: problem
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config:
max_steps: 50
weight_decay: 0.01
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56m2/2e8b85e6-bb40-401e-ac81-8389a95a2a8c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/021f9f7742ecff4b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 70
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 2e8b85e6-bb40-401e-ac81-8389a95a2a8c
wandb_project: god
wandb_run: ixgj
wandb_runid: 2e8b85e6-bb40-401e-ac81-8389a95a2a8c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
2e8b85e6-bb40-401e-ac81-8389a95a2a8c
This model is a fine-tuned version of NousResearch/Yarn-Llama-2-7b-64k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0044
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0010 | 1 | 2.4859 |
8.8259 | 0.0078 | 8 | 0.7044 |
0.2985 | 0.0155 | 16 | 0.0033 |
0.0 | 0.0233 | 24 | 0.0044 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 5
Model tree for sn56m2/2e8b85e6-bb40-401e-ac81-8389a95a2a8c
Base model
NousResearch/Yarn-Llama-2-7b-64k