Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: JackFram/llama-160m
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 809cbd0789d33540_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/809cbd0789d33540_train_data.json
  type:
    field_input: testcase
    field_instruction: instruction
    field_output: code
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56m3/37a3c045-b032-4d86-94d1-2e0a0ed0e8cc
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/809cbd0789d33540_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 37a3c045-b032-4d86-94d1-2e0a0ed0e8cc
wandb_project: god
wandb_run: 5h2h
wandb_runid: 37a3c045-b032-4d86-94d1-2e0a0ed0e8cc
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

37a3c045-b032-4d86-94d1-2e0a0ed0e8cc

This model is a fine-tuned version of JackFram/llama-160m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
4.4655 0.0006 1 4.3506
4.2561 0.0051 9 3.9722
3.3793 0.0103 18 3.3184
3.0137 0.0154 27 2.9818
2.7922 0.0205 36 2.7196
2.5678 0.0257 45 2.5279
2.3366 0.0308 54 2.3886
2.2966 0.0359 63 2.2912
2.2486 0.0411 72 2.2277
2.1451 0.0462 81 2.1942
2.0679 0.0513 90 2.1808
2.1036 0.0565 99 2.1781

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56m3/37a3c045-b032-4d86-94d1-2e0a0ed0e8cc

Adapter
(152)
this model