See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: microsoft/Phi-3-mini-4k-instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 2ae5e8a9f5305db8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/2ae5e8a9f5305db8_train_data.json
type:
field_instruction: cleaned_description
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: sn56m5/1cdb2545-39f0-4188-90d4-f5eb874dab9f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 8
mlflow_experiment_name: /tmp/2ae5e8a9f5305db8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: sn56m5/1cdb2545
wandb_project: god
wandb_run: pu3x
wandb_runid: sn56m5/1cdb2545
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
935db186-0422-457c-b27d-ab90d64c6cd6
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4281
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 1.3182 |
4.794 | 0.0024 | 13 | 1.0742 |
3.3159 | 0.0049 | 26 | 0.7422 |
2.5682 | 0.0073 | 39 | 0.5951 |
2.1826 | 0.0098 | 52 | 0.5235 |
2.0396 | 0.0122 | 65 | 0.4850 |
2.084 | 0.0147 | 78 | 0.4613 |
1.825 | 0.0171 | 91 | 0.4451 |
1.8149 | 0.0195 | 104 | 0.4362 |
1.7526 | 0.0220 | 117 | 0.4311 |
1.8078 | 0.0244 | 130 | 0.4288 |
1.6956 | 0.0269 | 143 | 0.4281 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Model tree for sn56m5/1cdb2545-39f0-4188-90d4-f5eb874dab9f
Base model
microsoft/Phi-3-mini-4k-instruct