Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/SmolLM2-1.7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 8492dab84eb4a872_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/8492dab84eb4a872_train_data.json
  type:
    field_input: Abstract
    field_instruction: Title
    field_output: Hypothesis
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 2
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: sn56m5/207fc2cf-ee9b-453a-926d-05a83e07271e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 400
micro_batch_size: 2
mlflow_experiment_name: /tmp/8492dab84eb4a872_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: 3i3u
wandb_runid: null
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null

207fc2cf-ee9b-453a-926d-05a83e07271e

This model is a fine-tuned version of unsloth/SmolLM2-1.7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2802

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 5.2897
0.3004 0.0241 100 0.3025
0.2823 0.0482 200 0.2892
0.2718 0.0723 300 0.2830
0.2684 0.0964 400 0.2802

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56m5/207fc2cf-ee9b-453a-926d-05a83e07271e

Adapter
(113)
this model