SentenceTransformer
This is a sentence-transformers model trained on the klue/klue dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: ko
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("snunlp/KR-SBERT-Medium-extended-klueNLItriplet_PARpair_QApair-klueSTS")
# Run inference
sentences = [
'SR은 동대구·김천구미·신경주역에서 승하차하는 모든 국민에게 운임 10%를 할인해 준다.',
'SR은 동대구역, 김천구미역, 신주역을 오가는 모든 승객을 대상으로 요금을 10% 할인해 드립니다.',
'수강신청 하는 날짜가 어느 날짜인지 아시는지요?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8786 |
| spearman_cosine | 0.8765 |
| pearson_manhattan | 0.8589 |
| spearman_manhattan | 0.8582 |
| pearson_euclidean | 0.8595 |
| spearman_euclidean | 0.8597 |
| pearson_dot | 0.8518 |
| spearman_dot | 0.8479 |
| pearson_max | 0.8786 |
| spearman_max | 0.8765 |
Training Details
Training Dataset
klue/klue
- Dataset: klue/klue at 349481e
- Size: 11,668 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 7 tokens
- mean: 18.12 tokens
- max: 56 tokens
- min: 6 tokens
- mean: 17.58 tokens
- max: 60 tokens
- min: 0.0
- mean: 0.44
- max: 1.0
- Samples:
sentence1 sentence2 label 숙소 위치는 찾기 쉽고 일반적인 한국의 반지하 숙소입니다.숙박시설의 위치는 쉽게 찾을 수 있고 한국의 대표적인 반지하 숙박시설입니다.0.7428571428571428위반행위 조사 등을 거부·방해·기피한 자는 500만원 이하 과태료 부과 대상이다.시민들 스스로 자발적인 예방 노력을 한 것은 아산 뿐만이 아니었다.0.0회사가 보낸 메일은 이 지메일이 아니라 다른 지메일 계정으로 전달해줘.사람들이 주로 네이버 메일을 쓰는 이유를 알려줘0.06666666666666667 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
klue/klue
- Dataset: klue/klue at 349481e
- Size: 519 evaluation samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 7 tokens
- mean: 18.16 tokens
- max: 55 tokens
- min: 7 tokens
- mean: 17.69 tokens
- max: 58 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence1 sentence2 label 무엇보다도 호스트분들이 너무 친절하셨습니다.무엇보다도, 호스트들은 매우 친절했습니다.0.9714285714285713주요 관광지 모두 걸어서 이동가능합니다.위치는 피렌체 중심가까지 걸어서 이동 가능합니다.0.2857142857142858학생들의 균형 있는 영어능력을 향상시킬 수 있는 학교 수업을 유도하기 위해 2018학년도 수능부터 도입된 영어 영역 절대평가는 올해도 유지한다.영어 영역의 경우 학생들이 한글 해석본을 암기하는 문제를 해소하기 위해 2016학년도부터 적용했던 EBS 연계 방식을 올해도 유지한다.0.25714285714285723 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64num_train_epochs: 30warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 30max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
|---|---|---|---|---|
| 0 | 0 | - | - | 0.7123 |
| 0.0109 | 1 | 0.0255 | - | - |
| 0.5435 | 50 | 0.0225 | 0.0336 | 0.7961 |
| 1.0870 | 100 | 0.0159 | 0.0288 | 0.8299 |
| 1.6304 | 150 | 0.012 | 0.0258 | 0.8499 |
| 2.1739 | 200 | 0.0098 | 0.0238 | 0.8651 |
| 2.7174 | 250 | 0.0069 | 0.0233 | 0.8700 |
| 3.2609 | 300 | 0.0056 | 0.0241 | 0.8682 |
| 3.8043 | 350 | 0.0043 | 0.0231 | 0.8715 |
| 4.3478 | 400 | 0.0043 | 0.0261 | 0.8680 |
| 4.8913 | 450 | 0.0039 | 0.0239 | 0.8743 |
| 5.4348 | 500 | 0.0037 | 0.0247 | 0.8726 |
| 5.9783 | 550 | 0.0034 | 0.0231 | 0.8762 |
| 6.5217 | 600 | 0.003 | 0.0238 | 0.8746 |
| 7.0652 | 650 | 0.003 | 0.0246 | 0.8712 |
| 7.6087 | 700 | 0.0028 | 0.0240 | 0.8765 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 35
Dataset used to train snunlp/KR-SBERT-Medium-extended-klueNLItriplet_PARpair_QApair-klueSTS
Evaluation results
- Pearson Cosine on sts devself-reported0.879
- Spearman Cosine on sts devself-reported0.877
- Pearson Manhattan on sts devself-reported0.859
- Spearman Manhattan on sts devself-reported0.858
- Pearson Euclidean on sts devself-reported0.860
- Spearman Euclidean on sts devself-reported0.860
- Pearson Dot on sts devself-reported0.852
- Spearman Dot on sts devself-reported0.848
- Pearson Max on sts devself-reported0.879
- Spearman Max on sts devself-reported0.877