Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
12
This is a sentence-transformers model finetuned from FacebookAI/roberta-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The little boy is jumping into a puddle on the street.',
'The boy is outside.',
'The dog is playing with a ball.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
premise, hypothesis, and label| premise | hypothesis | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| premise | hypothesis | label |
|---|---|---|
A person on a horse jumps over a broken down airplane. |
A person is training his horse for a competition. |
1 |
A person on a horse jumps over a broken down airplane. |
A person is at a diner, ordering an omelette. |
2 |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
0 |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
premise, hypothesis, and label| premise | hypothesis | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| premise | hypothesis | label |
|---|---|---|
Two women are embracing while holding to go packages. |
The sisters are hugging goodbye while holding to go packages after just eating lunch. |
1 |
Two women are embracing while holding to go packages. |
Two woman are holding packages. |
0 |
Two women are embracing while holding to go packages. |
The men are fighting outside a deli. |
2 |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 1e-05warmup_ratio: 0.1batch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0007 | 5 | - | 4.4994 |
| 0.0014 | 10 | - | 4.4981 |
| 0.0020 | 15 | - | 4.4960 |
| 0.0027 | 20 | - | 4.4930 |
| 0.0034 | 25 | - | 4.4890 |
| 0.0041 | 30 | - | 4.4842 |
| 0.0048 | 35 | - | 4.4784 |
| 0.0054 | 40 | - | 4.4716 |
| 0.0061 | 45 | - | 4.4636 |
| 0.0068 | 50 | - | 4.4543 |
| 0.0075 | 55 | - | 4.4438 |
| 0.0082 | 60 | - | 4.4321 |
| 0.0088 | 65 | - | 4.4191 |
| 0.0095 | 70 | - | 4.4042 |
| 0.0102 | 75 | - | 4.3875 |
| 0.0109 | 80 | - | 4.3686 |
| 0.0115 | 85 | - | 4.3474 |
| 0.0122 | 90 | - | 4.3236 |
| 0.0129 | 95 | - | 4.2968 |
| 0.0136 | 100 | 4.4995 | 4.2666 |
| 0.0143 | 105 | - | 4.2326 |
| 0.0149 | 110 | - | 4.1947 |
| 0.0156 | 115 | - | 4.1516 |
| 0.0163 | 120 | - | 4.1029 |
| 0.0170 | 125 | - | 4.0476 |
| 0.0177 | 130 | - | 3.9850 |
| 0.0183 | 135 | - | 3.9162 |
| 0.0190 | 140 | - | 3.8397 |
| 0.0197 | 145 | - | 3.7522 |
| 0.0204 | 150 | - | 3.6521 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
FacebookAI/roberta-base