|
--- |
|
base_model: macadeliccc/OmniCorso-7B |
|
inference: false |
|
language: |
|
- en |
|
library_name: transformers |
|
license: cc |
|
merged_models: |
|
- macadeliccc/MBX-7B-v3-DPO |
|
- mlabonne/OmniBeagle-7B |
|
model-index: |
|
- name: OmniCorso-7B |
|
results: |
|
- dataset: |
|
args: |
|
num_few_shot: 25 |
|
config: ARC-Challenge |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
split: test |
|
type: ai2_arc |
|
metrics: |
|
- name: normalized accuracy |
|
type: acc_norm |
|
value: 72.7 |
|
source: |
|
name: Open LLM Leaderboard |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B |
|
task: |
|
name: Text Generation |
|
type: text-generation |
|
- dataset: |
|
args: |
|
num_few_shot: 10 |
|
name: HellaSwag (10-Shot) |
|
split: validation |
|
type: hellaswag |
|
metrics: |
|
- name: normalized accuracy |
|
type: acc_norm |
|
value: 88.7 |
|
source: |
|
name: Open LLM Leaderboard |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B |
|
task: |
|
name: Text Generation |
|
type: text-generation |
|
- dataset: |
|
args: |
|
num_few_shot: 5 |
|
config: all |
|
name: MMLU (5-Shot) |
|
split: test |
|
type: cais/mmlu |
|
metrics: |
|
- name: accuracy |
|
type: acc |
|
value: 64.91 |
|
source: |
|
name: Open LLM Leaderboard |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B |
|
task: |
|
name: Text Generation |
|
type: text-generation |
|
- dataset: |
|
args: |
|
num_few_shot: 0 |
|
config: multiple_choice |
|
name: TruthfulQA (0-shot) |
|
split: validation |
|
type: truthful_qa |
|
metrics: |
|
- type: mc2 |
|
value: 73.43 |
|
source: |
|
name: Open LLM Leaderboard |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B |
|
task: |
|
name: Text Generation |
|
type: text-generation |
|
- dataset: |
|
args: |
|
num_few_shot: 5 |
|
config: winogrande_xl |
|
name: Winogrande (5-shot) |
|
split: validation |
|
type: winogrande |
|
metrics: |
|
- name: accuracy |
|
type: acc |
|
value: 83.74 |
|
source: |
|
name: Open LLM Leaderboard |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B |
|
task: |
|
name: Text Generation |
|
type: text-generation |
|
- dataset: |
|
args: |
|
num_few_shot: 5 |
|
config: main |
|
name: GSM8k (5-shot) |
|
split: test |
|
type: gsm8k |
|
metrics: |
|
- name: accuracy |
|
type: acc |
|
value: 70.96 |
|
source: |
|
name: Open LLM Leaderboard |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B |
|
task: |
|
name: Text Generation |
|
type: text-generation |
|
model_creator: macadeliccc |
|
model_name: OmniCorso-7B |
|
model_type: mistral |
|
pipeline_tag: text-generation |
|
prompt_template: '<|im_start|>system |
|
|
|
{system_message}<|im_end|> |
|
|
|
<|im_start|>user |
|
|
|
{prompt}<|im_end|> |
|
|
|
<|im_start|>assistant |
|
|
|
' |
|
quantized_by: Suparious |
|
tags: |
|
- mergekit |
|
- merge |
|
- quantized |
|
- 4-bit |
|
- AWQ |
|
- pytorch |
|
- mistral |
|
- instruct |
|
- text-generation |
|
- license:apache-2.0 |
|
- autotrain_compatible |
|
- endpoints_compatible |
|
- text-generation-inference |
|
--- |
|
# macadeliccc/OmniCorso-7B AWQ |
|
|
|
- Model creator: [macadeliccc](https://huggingface.co/macadeliccc) |
|
- Original model: [OmniCorso-7B](https://huggingface.co/macadeliccc/OmniCorso-7B) |
|
|
|
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/PaG7ByWy1qnh_tcSuh35U.webp) |
|
|
|
## Model Summary |
|
|
|
The following models were included in the merge: |
|
* [macadeliccc/MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO) |
|
* [mlabonne/OmniBeagle-7B](https://huggingface.co/mlabonne/OmniBeagle-7B) |
|
|
|
## How to use |
|
|
|
### Install the necessary packages |
|
|
|
```bash |
|
pip install --upgrade autoawq autoawq-kernels |
|
``` |
|
|
|
### Example Python code |
|
|
|
```python |
|
from awq import AutoAWQForCausalLM |
|
from transformers import AutoTokenizer, TextStreamer |
|
|
|
model_path = "solidrust/OmniCorso-7B-AWQ" |
|
system_message = "You are Newton, incarnated as a powerful AI." |
|
|
|
# Load model |
|
model = AutoAWQForCausalLM.from_quantized(model_path, |
|
fuse_layers=True) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, |
|
trust_remote_code=True) |
|
streamer = TextStreamer(tokenizer, |
|
skip_prompt=True, |
|
skip_special_tokens=True) |
|
|
|
# Convert prompt to tokens |
|
prompt_template = """\ |
|
<|im_start|>system |
|
{system_message}<|im_end|> |
|
<|im_start|>user |
|
{prompt}<|im_end|> |
|
<|im_start|>assistant""" |
|
|
|
prompt = "You're standing on the surface of the Earth. "\ |
|
"You walk one mile south, one mile west and one mile north. "\ |
|
"You end up exactly where you started. Where are you?" |
|
|
|
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt), |
|
return_tensors='pt').input_ids.cuda() |
|
|
|
# Generate output |
|
generation_output = model.generate(tokens, |
|
streamer=streamer, |
|
max_new_tokens=512) |
|
|
|
``` |
|
|
|
### About AWQ |
|
|
|
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. |
|
|
|
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. |
|
|
|
It is supported by: |
|
|
|
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ |
|
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. |
|
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) |
|
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers |
|
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code |
|
|
|
## Prompt template: ChatML |
|
|
|
```plaintext |
|
<|im_start|>system |
|
{system_message}<|im_end|> |
|
<|im_start|>user |
|
{prompt}<|im_end|> |
|
<|im_start|>assistant |
|
``` |
|
|