|
import requests |
|
from PIL import Image |
|
from transformers import Blip2Processor, Blip2ForConditionalGeneration |
|
from typing import Dict, List, Any |
|
import torch |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.base_model_name = "Salesforce/blip2-opt-2.7b" |
|
self.model_name = "sooh-j/blip2-vizwizqa" |
|
self.base_model = Blip2ForConditionalGeneration.from_pretrained(self.base_model_name, |
|
load_in_8bit=True) |
|
self.processor = Blip2Processor.from_pretrained(self.base_model_name) |
|
self.model = PeftModel.from_pretrained(self.model_name, self.base_model_name) |
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.model.to(self.device) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
data = data.pop("inputs", data) |
|
|
|
image = data.image |
|
question = data.question |
|
|
|
prompt = f"Question: {question}, Answer:" |
|
processed = self.processor(images=image, prompt, return_tensors="pt").to(self.device) |
|
|
|
out = self.model.generate(**processed) |
|
|
|
return self.processor.decode(out[0], skip_special_tokens=True) |