|
from functools import partial |
|
import numpy as np |
|
|
|
import torch |
|
from torch import nn, Tensor |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from .shared import BackboneRegistry, ComplexConv2d, ComplexConvTranspose2d, ComplexLinear, \ |
|
DiffusionStepEmbedding, GaussianFourierProjection, FeatureMapDense, torch_complex_from_reim |
|
|
|
|
|
def get_activation(name): |
|
if name == "silu": |
|
return nn.SiLU |
|
elif name == "relu": |
|
return nn.ReLU |
|
elif name == "leaky_relu": |
|
return nn.LeakyReLU |
|
else: |
|
raise NotImplementedError(f"Unknown activation: {name}") |
|
|
|
|
|
class BatchNorm(_BatchNorm): |
|
def _check_input_dim(self, input): |
|
if input.dim() < 2 or input.dim() > 4: |
|
raise ValueError("expected 4D or 3D input (got {}D input)".format(input.dim())) |
|
|
|
|
|
class OnReIm(nn.Module): |
|
def __init__(self, module_cls, *args, **kwargs): |
|
super().__init__() |
|
self.re_module = module_cls(*args, **kwargs) |
|
self.im_module = module_cls(*args, **kwargs) |
|
|
|
def forward(self, x): |
|
return torch_complex_from_reim(self.re_module(x.real), self.im_module(x.imag)) |
|
|
|
|
|
|
|
|
|
def unet_decoder_args(encoders, *, skip_connections): |
|
"""Get list of decoder arguments for upsampling (right) side of a symmetric u-net, |
|
given the arguments used to construct the encoder. |
|
Args: |
|
encoders (tuple of length `N` of tuples of (in_chan, out_chan, kernel_size, stride, padding)): |
|
List of arguments used to construct the encoders |
|
skip_connections (bool): Whether to include skip connections in the |
|
calculation of decoder input channels. |
|
Return: |
|
tuple of length `N` of tuples of (in_chan, out_chan, kernel_size, stride, padding): |
|
Arguments to be used to construct decoders |
|
""" |
|
decoder_args = [] |
|
for enc_in_chan, enc_out_chan, enc_kernel_size, enc_stride, enc_padding, enc_dilation in reversed(encoders): |
|
if skip_connections and decoder_args: |
|
skip_in_chan = enc_out_chan |
|
else: |
|
skip_in_chan = 0 |
|
decoder_args.append( |
|
(enc_out_chan + skip_in_chan, enc_in_chan, enc_kernel_size, enc_stride, enc_padding, enc_dilation) |
|
) |
|
return tuple(decoder_args) |
|
|
|
|
|
def make_unet_encoder_decoder_args(encoder_args, decoder_args): |
|
encoder_args = tuple( |
|
( |
|
in_chan, |
|
out_chan, |
|
tuple(kernel_size), |
|
tuple(stride), |
|
tuple([n // 2 for n in kernel_size]) if padding == "auto" else tuple(padding), |
|
tuple(dilation) |
|
) |
|
for in_chan, out_chan, kernel_size, stride, padding, dilation in encoder_args |
|
) |
|
|
|
if decoder_args == "auto": |
|
decoder_args = unet_decoder_args( |
|
encoder_args, |
|
skip_connections=True, |
|
) |
|
else: |
|
decoder_args = tuple( |
|
( |
|
in_chan, |
|
out_chan, |
|
tuple(kernel_size), |
|
tuple(stride), |
|
tuple([n // 2 for n in kernel_size]) if padding == "auto" else padding, |
|
tuple(dilation), |
|
output_padding, |
|
) |
|
for in_chan, out_chan, kernel_size, stride, padding, dilation, output_padding in decoder_args |
|
) |
|
|
|
return encoder_args, decoder_args |
|
|
|
|
|
DCUNET_ARCHITECTURES = { |
|
"DCUNet-10": make_unet_encoder_decoder_args( |
|
|
|
|
|
( |
|
(1, 32, (7, 5), (2, 2), "auto", (1,1)), |
|
(32, 64, (7, 5), (2, 2), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 2), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 2), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 1), "auto", (1,1)), |
|
), |
|
|
|
"auto", |
|
), |
|
"DCUNet-16": make_unet_encoder_decoder_args( |
|
|
|
|
|
( |
|
(1, 32, (7, 5), (2, 2), "auto", (1,1)), |
|
(32, 32, (7, 5), (2, 1), "auto", (1,1)), |
|
(32, 64, (7, 5), (2, 2), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 1), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 2), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 1), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 2), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 1), "auto", (1,1)), |
|
), |
|
|
|
"auto", |
|
), |
|
"DCUNet-20": make_unet_encoder_decoder_args( |
|
|
|
|
|
( |
|
(1, 32, (7, 1), (1, 1), "auto", (1,1)), |
|
(32, 32, (1, 7), (1, 1), "auto", (1,1)), |
|
(32, 64, (7, 5), (2, 2), "auto", (1,1)), |
|
(64, 64, (7, 5), (2, 1), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 2), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 1), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 2), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 1), "auto", (1,1)), |
|
(64, 64, (5, 3), (2, 2), "auto", (1,1)), |
|
(64, 90, (5, 3), (2, 1), "auto", (1,1)), |
|
), |
|
|
|
"auto", |
|
), |
|
"DilDCUNet-v2": make_unet_encoder_decoder_args( |
|
|
|
|
|
( |
|
(1, 32, (4, 4), (1, 1), "auto", (1, 1)), |
|
(32, 32, (4, 4), (1, 1), "auto", (1, 1)), |
|
(32, 32, (4, 4), (1, 1), "auto", (1, 1)), |
|
(32, 64, (4, 4), (2, 1), "auto", (2, 1)), |
|
(64, 128, (4, 4), (2, 2), "auto", (4, 1)), |
|
(128, 256, (4, 4), (2, 2), "auto", (8, 1)), |
|
), |
|
|
|
"auto", |
|
), |
|
} |
|
|
|
|
|
@BackboneRegistry.register("dcunet") |
|
class DCUNet(nn.Module): |
|
@staticmethod |
|
def add_argparse_args(parser): |
|
parser.add_argument("--dcunet-architecture", type=str, default="DilDCUNet-v2", choices=DCUNET_ARCHITECTURES.keys(), help="The concrete DCUNet architecture. 'DilDCUNet-v2' by default.") |
|
parser.add_argument("--dcunet-time-embedding", type=str, choices=("gfp", "ds", "none"), default="gfp", help="Timestep embedding style. 'gfp' (Gaussian Fourier Projections) by default.") |
|
parser.add_argument("--dcunet-temb-layers-global", type=int, default=1, help="Number of global linear+activation layers for the time embedding. 1 by default.") |
|
parser.add_argument("--dcunet-temb-layers-local", type=int, default=1, help="Number of local (per-encoder/per-decoder) linear+activation layers for the time embedding. 1 by default.") |
|
parser.add_argument("--dcunet-temb-activation", type=str, default="silu", help="The (complex) activation to use between all (global&local) time embedding layers.") |
|
parser.add_argument("--dcunet-time-embedding-complex", action="store_true", help="Use complex-valued timestep embedding. Compatible with 'gfp' and 'ds' embeddings.") |
|
parser.add_argument("--dcunet-fix-length", type=str, default="pad", choices=("pad", "trim", "none"), help="DCUNet strategy to 'fix' mismatched input timespan. 'pad' by default.") |
|
parser.add_argument("--dcunet-mask-bound", type=str, choices=("tanh", "sigmoid", "none"), default="none", help="DCUNet output bounding strategy. 'none' by default.") |
|
parser.add_argument("--dcunet-norm-type", type=str, choices=("bN", "CbN"), default="bN", help="The type of norm to use within each encoder and decoder layer. 'bN' (real/imaginary separate batch norm) by default.") |
|
parser.add_argument("--dcunet-activation", type=str, choices=("leaky_relu", "relu", "silu"), default="leaky_relu", help="The activation to use within each encoder and decoder layer. 'leaky_relu' by default.") |
|
return parser |
|
|
|
def __init__( |
|
self, |
|
dcunet_architecture: str = "DilDCUNet-v2", |
|
dcunet_time_embedding: str = "gfp", |
|
dcunet_temb_layers_global: int = 2, |
|
dcunet_temb_layers_local: int = 1, |
|
dcunet_temb_activation: str = "silu", |
|
dcunet_time_embedding_complex: bool = False, |
|
dcunet_fix_length: str = "pad", |
|
dcunet_mask_bound: str = "none", |
|
dcunet_norm_type: str = "bN", |
|
dcunet_activation: str = "relu", |
|
embed_dim: int = 128, |
|
**kwargs |
|
): |
|
super().__init__() |
|
|
|
self.architecture = dcunet_architecture |
|
self.fix_length_mode = (dcunet_fix_length if dcunet_fix_length != "none" else None) |
|
self.norm_type = dcunet_norm_type |
|
self.activation = dcunet_activation |
|
self.input_channels = 2 |
|
self.time_embedding = (dcunet_time_embedding if dcunet_time_embedding != "none" else None) |
|
self.time_embedding_complex = dcunet_time_embedding_complex |
|
self.temb_layers_global = dcunet_temb_layers_global |
|
self.temb_layers_local = dcunet_temb_layers_local |
|
self.temb_activation = dcunet_temb_activation |
|
conf_encoders, conf_decoders = DCUNET_ARCHITECTURES[dcunet_architecture] |
|
|
|
|
|
_replaced_input_channels, *rest = conf_encoders[0] |
|
encoders = ((self.input_channels, *rest), *conf_encoders[1:]) |
|
decoders = conf_decoders |
|
self.encoders_stride_product = np.prod( |
|
[enc_stride for _, _, _, enc_stride, _, _ in encoders], axis=0 |
|
) |
|
|
|
|
|
encoder_decoder_kwargs = dict( |
|
norm_type=self.norm_type, activation=self.activation, |
|
temb_layers=self.temb_layers_local, temb_activation=self.temb_activation) |
|
|
|
|
|
embed_ops = [] |
|
if self.time_embedding is not None: |
|
complex_valued = self.time_embedding_complex |
|
if self.time_embedding == "gfp": |
|
embed_ops += [GaussianFourierProjection(embed_dim=embed_dim, complex_valued=complex_valued)] |
|
encoder_decoder_kwargs["embed_dim"] = embed_dim |
|
elif self.time_embedding == "ds": |
|
embed_ops += [DiffusionStepEmbedding(embed_dim=embed_dim, complex_valued=complex_valued)] |
|
encoder_decoder_kwargs["embed_dim"] = embed_dim |
|
|
|
if self.time_embedding_complex: |
|
assert self.time_embedding in ("gfp", "ds"), "Complex timestep embedding only available for gfp and ds" |
|
encoder_decoder_kwargs["complex_time_embedding"] = True |
|
for _ in range(self.temb_layers_global): |
|
embed_ops += [ |
|
ComplexLinear(embed_dim, embed_dim, complex_valued=True), |
|
OnReIm(get_activation(dcunet_temb_activation)) |
|
] |
|
self.embed = nn.Sequential(*embed_ops) |
|
|
|
|
|
output_layer = ComplexConvTranspose2d(*decoders[-1]) |
|
encoders = [DCUNetComplexEncoderBlock(*args, **encoder_decoder_kwargs) for args in encoders] |
|
decoders = [DCUNetComplexDecoderBlock(*args, **encoder_decoder_kwargs) for args in decoders[:-1]] |
|
|
|
self.mask_bound = (dcunet_mask_bound if dcunet_mask_bound != "none" else None) |
|
if self.mask_bound is not None: |
|
raise NotImplementedError("sorry, mask bounding not implemented at the moment") |
|
|
|
|
|
|
|
|
|
assert len(encoders) == len(decoders) + 1 |
|
self.encoders = nn.ModuleList(encoders) |
|
self.decoders = nn.ModuleList(decoders) |
|
self.output_layer = output_layer or nn.Identity() |
|
|
|
def forward(self, spec, t) -> Tensor: |
|
""" |
|
Input shape is expected to be $(batch, nfreqs, time)$, with $nfreqs - 1$ divisible |
|
by $f_0 * f_1 * ... * f_N$ where $f_k$ are the frequency strides of the encoders, |
|
and $time - 1$ is divisible by $t_0 * t_1 * ... * t_N$ where $t_N$ are the time |
|
strides of the encoders. |
|
Args: |
|
spec (Tensor): complex spectrogram tensor. 1D, 2D or 3D tensor, time last. |
|
Returns: |
|
Tensor, of shape (batch, time) or (time). |
|
""" |
|
|
|
|
|
x_in = self.fix_input_dims(spec) |
|
x = x_in |
|
t_embed = self.embed(t+0j) if self.time_embedding is not None else None |
|
|
|
enc_outs = [] |
|
for idx, enc in enumerate(self.encoders): |
|
x = enc(x, t_embed) |
|
|
|
enc_outs.append(x) |
|
for (enc_out, dec) in zip(reversed(enc_outs[:-1]), self.decoders): |
|
x = dec(x, t_embed, output_size=enc_out.shape) |
|
x = torch.cat([x, enc_out], dim=1) |
|
|
|
output = self.output_layer(x, output_size=x_in.shape) |
|
|
|
output = self.fix_output_dims(output, spec) |
|
return output |
|
|
|
def fix_input_dims(self, x): |
|
return _fix_dcu_input_dims( |
|
self.fix_length_mode, x, torch.from_numpy(self.encoders_stride_product) |
|
) |
|
|
|
def fix_output_dims(self, out, x): |
|
return _fix_dcu_output_dims(self.fix_length_mode, out, x) |
|
|
|
|
|
def _fix_dcu_input_dims(fix_length_mode, x, encoders_stride_product): |
|
"""Pad or trim `x` to a length compatible with DCUNet.""" |
|
freq_prod = int(encoders_stride_product[0]) |
|
time_prod = int(encoders_stride_product[1]) |
|
if (x.shape[2] - 1) % freq_prod: |
|
raise TypeError( |
|
f"Input shape must be [batch, ch, freq + 1, time + 1] with freq divisible by " |
|
f"{freq_prod}, got {x.shape} instead" |
|
) |
|
time_remainder = (x.shape[3] - 1) % time_prod |
|
if time_remainder: |
|
if fix_length_mode is None: |
|
raise TypeError( |
|
f"Input shape must be [batch, ch, freq + 1, time + 1] with time divisible by " |
|
f"{time_prod}, got {x.shape} instead. Set the 'fix_length_mode' argument " |
|
f"in 'DCUNet' to 'pad' or 'trim' to fix shapes automatically." |
|
) |
|
elif fix_length_mode == "pad": |
|
pad_shape = [0, time_prod - time_remainder] |
|
x = nn.functional.pad(x, pad_shape, mode="constant") |
|
elif fix_length_mode == "trim": |
|
pad_shape = [0, -time_remainder] |
|
x = nn.functional.pad(x, pad_shape, mode="constant") |
|
else: |
|
raise ValueError(f"Unknown fix_length mode '{fix_length_mode}'") |
|
return x |
|
|
|
|
|
def _fix_dcu_output_dims(fix_length_mode, out, x): |
|
"""Fix shape of `out` to the original shape of `x` by padding/cropping.""" |
|
inp_len = x.shape[-1] |
|
output_len = out.shape[-1] |
|
return nn.functional.pad(out, [0, inp_len - output_len]) |
|
|
|
|
|
def _get_norm(norm_type): |
|
if norm_type == "CbN": |
|
return ComplexBatchNorm |
|
elif norm_type == "bN": |
|
return partial(OnReIm, BatchNorm) |
|
else: |
|
raise NotImplementedError(f"Unknown norm type: {norm_type}") |
|
|
|
|
|
class DCUNetComplexEncoderBlock(nn.Module): |
|
def __init__( |
|
self, |
|
in_chan, |
|
out_chan, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
norm_type="bN", |
|
activation="leaky_relu", |
|
embed_dim=None, |
|
complex_time_embedding=False, |
|
temb_layers=1, |
|
temb_activation="silu" |
|
): |
|
super().__init__() |
|
|
|
self.in_chan = in_chan |
|
self.out_chan = out_chan |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.padding = padding |
|
self.dilation = dilation |
|
self.temb_layers = temb_layers |
|
self.temb_activation = temb_activation |
|
self.complex_time_embedding = complex_time_embedding |
|
|
|
self.conv = ComplexConv2d( |
|
in_chan, out_chan, kernel_size, stride, padding, bias=norm_type is None, dilation=dilation |
|
) |
|
self.norm = _get_norm(norm_type)(out_chan) |
|
self.activation = OnReIm(get_activation(activation)) |
|
self.embed_dim = embed_dim |
|
if self.embed_dim is not None: |
|
ops = [] |
|
for _ in range(max(0, self.temb_layers - 1)): |
|
ops += [ |
|
ComplexLinear(self.embed_dim, self.embed_dim, complex_valued=True), |
|
OnReIm(get_activation(self.temb_activation)) |
|
] |
|
ops += [ |
|
FeatureMapDense(self.embed_dim, self.out_chan, complex_valued=True), |
|
OnReIm(get_activation(self.temb_activation)) |
|
] |
|
self.embed_layer = nn.Sequential(*ops) |
|
|
|
def forward(self, x, t_embed): |
|
y = self.conv(x) |
|
if self.embed_dim is not None: |
|
y = y + self.embed_layer(t_embed) |
|
return self.activation(self.norm(y)) |
|
|
|
|
|
class DCUNetComplexDecoderBlock(nn.Module): |
|
def __init__( |
|
self, |
|
in_chan, |
|
out_chan, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
output_padding=(0, 0), |
|
norm_type="bN", |
|
activation="leaky_relu", |
|
embed_dim=None, |
|
temb_layers=1, |
|
temb_activation='swish', |
|
complex_time_embedding=False, |
|
): |
|
super().__init__() |
|
|
|
self.in_chan = in_chan |
|
self.out_chan = out_chan |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.padding = padding |
|
self.dilation = dilation |
|
self.output_padding = output_padding |
|
self.complex_time_embedding = complex_time_embedding |
|
self.temb_layers = temb_layers |
|
self.temb_activation = temb_activation |
|
|
|
self.deconv = ComplexConvTranspose2d( |
|
in_chan, out_chan, kernel_size, stride, padding, output_padding, dilation=dilation, bias=norm_type is None |
|
) |
|
self.norm = _get_norm(norm_type)(out_chan) |
|
self.activation = OnReIm(get_activation(activation)) |
|
self.embed_dim = embed_dim |
|
if self.embed_dim is not None: |
|
ops = [] |
|
for _ in range(max(0, self.temb_layers - 1)): |
|
ops += [ |
|
ComplexLinear(self.embed_dim, self.embed_dim, complex_valued=True), |
|
OnReIm(get_activation(self.temb_activation)) |
|
] |
|
ops += [ |
|
FeatureMapDense(self.embed_dim, self.out_chan, complex_valued=True), |
|
OnReIm(get_activation(self.temb_activation)) |
|
] |
|
self.embed_layer = nn.Sequential(*ops) |
|
|
|
def forward(self, x, t_embed, output_size=None): |
|
y = self.deconv(x, output_size=output_size) |
|
if self.embed_dim is not None: |
|
y = y + self.embed_layer(t_embed) |
|
return self.activation(self.norm(y)) |
|
|
|
|
|
|
|
class ComplexBatchNorm(torch.nn.Module): |
|
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=False): |
|
super(ComplexBatchNorm, self).__init__() |
|
self.num_features = num_features |
|
self.eps = eps |
|
self.momentum = momentum |
|
self.affine = affine |
|
self.track_running_stats = track_running_stats |
|
if self.affine: |
|
self.Wrr = torch.nn.Parameter(torch.Tensor(num_features)) |
|
self.Wri = torch.nn.Parameter(torch.Tensor(num_features)) |
|
self.Wii = torch.nn.Parameter(torch.Tensor(num_features)) |
|
self.Br = torch.nn.Parameter(torch.Tensor(num_features)) |
|
self.Bi = torch.nn.Parameter(torch.Tensor(num_features)) |
|
else: |
|
self.register_parameter('Wrr', None) |
|
self.register_parameter('Wri', None) |
|
self.register_parameter('Wii', None) |
|
self.register_parameter('Br', None) |
|
self.register_parameter('Bi', None) |
|
if self.track_running_stats: |
|
self.register_buffer('RMr', torch.zeros(num_features)) |
|
self.register_buffer('RMi', torch.zeros(num_features)) |
|
self.register_buffer('RVrr', torch.ones (num_features)) |
|
self.register_buffer('RVri', torch.zeros(num_features)) |
|
self.register_buffer('RVii', torch.ones (num_features)) |
|
self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long)) |
|
else: |
|
self.register_parameter('RMr', None) |
|
self.register_parameter('RMi', None) |
|
self.register_parameter('RVrr', None) |
|
self.register_parameter('RVri', None) |
|
self.register_parameter('RVii', None) |
|
self.register_parameter('num_batches_tracked', None) |
|
self.reset_parameters() |
|
|
|
def reset_running_stats(self): |
|
if self.track_running_stats: |
|
self.RMr.zero_() |
|
self.RMi.zero_() |
|
self.RVrr.fill_(1) |
|
self.RVri.zero_() |
|
self.RVii.fill_(1) |
|
self.num_batches_tracked.zero_() |
|
|
|
def reset_parameters(self): |
|
self.reset_running_stats() |
|
if self.affine: |
|
self.Br.data.zero_() |
|
self.Bi.data.zero_() |
|
self.Wrr.data.fill_(1) |
|
self.Wri.data.uniform_(-.9, +.9) |
|
self.Wii.data.fill_(1) |
|
|
|
def _check_input_dim(self, xr, xi): |
|
assert(xr.shape == xi.shape) |
|
assert(xr.size(1) == self.num_features) |
|
|
|
def forward(self, x): |
|
xr, xi = x.real, x.imag |
|
self._check_input_dim(xr, xi) |
|
|
|
exponential_average_factor = 0.0 |
|
|
|
if self.training and self.track_running_stats: |
|
self.num_batches_tracked += 1 |
|
if self.momentum is None: |
|
exponential_average_factor = 1.0 / self.num_batches_tracked.item() |
|
else: |
|
exponential_average_factor = self.momentum |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
training = self.training or not self.track_running_stats |
|
redux = [i for i in reversed(range(xr.dim())) if i!=1] |
|
vdim = [1] * xr.dim() |
|
vdim[1] = xr.size(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if training: |
|
Mr, Mi = xr, xi |
|
for d in redux: |
|
Mr = Mr.mean(d, keepdim=True) |
|
Mi = Mi.mean(d, keepdim=True) |
|
if self.track_running_stats: |
|
self.RMr.lerp_(Mr.squeeze(), exponential_average_factor) |
|
self.RMi.lerp_(Mi.squeeze(), exponential_average_factor) |
|
else: |
|
Mr = self.RMr.view(vdim) |
|
Mi = self.RMi.view(vdim) |
|
xr, xi = xr-Mr, xi-Mi |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if training: |
|
Vrr = xr * xr |
|
Vri = xr * xi |
|
Vii = xi * xi |
|
for d in redux: |
|
Vrr = Vrr.mean(d, keepdim=True) |
|
Vri = Vri.mean(d, keepdim=True) |
|
Vii = Vii.mean(d, keepdim=True) |
|
if self.track_running_stats: |
|
self.RVrr.lerp_(Vrr.squeeze(), exponential_average_factor) |
|
self.RVri.lerp_(Vri.squeeze(), exponential_average_factor) |
|
self.RVii.lerp_(Vii.squeeze(), exponential_average_factor) |
|
else: |
|
Vrr = self.RVrr.view(vdim) |
|
Vri = self.RVri.view(vdim) |
|
Vii = self.RVii.view(vdim) |
|
Vrr = Vrr + self.eps |
|
Vri = Vri |
|
Vii = Vii + self.eps |
|
|
|
|
|
|
|
|
|
|
|
|
|
tau = Vrr + Vii |
|
delta = torch.addcmul(Vrr * Vii, Vri, Vri, value=-1) |
|
s = delta.sqrt() |
|
t = (tau + 2*s).sqrt() |
|
|
|
|
|
rst = (s * t).reciprocal() |
|
Urr = (s + Vii) * rst |
|
Uii = (s + Vrr) * rst |
|
Uri = ( - Vri) * rst |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.affine: |
|
Wrr, Wri, Wii = self.Wrr.view(vdim), self.Wri.view(vdim), self.Wii.view(vdim) |
|
Zrr = (Wrr * Urr) + (Wri * Uri) |
|
Zri = (Wrr * Uri) + (Wri * Uii) |
|
Zir = (Wri * Urr) + (Wii * Uri) |
|
Zii = (Wri * Uri) + (Wii * Uii) |
|
else: |
|
Zrr, Zri, Zir, Zii = Urr, Uri, Uri, Uii |
|
|
|
yr = (Zrr * xr) + (Zri * xi) |
|
yi = (Zir * xr) + (Zii * xi) |
|
|
|
if self.affine: |
|
yr = yr + self.Br.view(vdim) |
|
yi = yi + self.Bi.view(vdim) |
|
|
|
return torch.view_as_complex(torch.stack([yr, yi], dim=-1)) |
|
|
|
def extra_repr(self): |
|
return '{num_features}, eps={eps}, momentum={momentum}, affine={affine}, ' \ |
|
'track_running_stats={track_running_stats}'.format(**self.__dict__) |
|
|