File size: 2,616 Bytes
1f7d4dd
 
 
 
 
960296f
1f7d4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
940de34
1f7d4dd
 
 
 
 
 
 
 
 
 
7c189e4
1f7d4dd
7c189e4
1f7d4dd
7c189e4
1f7d4dd
190472c
1f7d4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
import torch
from utils import transformer, tensor_to_img
from network import Style_Transfer_Network

check_point = torch.load("check_point1_0.pth", map_location = torch.device('cpu'))
model = Style_Transfer_Network()
model.load_state_dict(check_point['state_dict'])

def style_transfer(content_img, style_strength, style_img_1 = None, iw_1 = 0, style_img_2 = None, iw_2 = 0, style_img_3 = None, iw_3 = 0, preserve_color = None):
    transform = transformer(imsize = 512)

    content = transform(content_img).unsqueeze(0)

    iw = [iw_1, iw_2, iw_3]
    interpolation_weights = [i/ sum(iw) for i in iw]

    style_imgs = [style_img_1, style_img_2, style_img_3]
    styles = []
    for style_img in style_imgs:
      if style_img is not None:
        styles.append(transform(style_img).unsqueeze(0))
    if preserve_color == "None": preserve_color = None
    elif preserve_color == "Whitening & Coloring": preserve_color = "whitening_and_coloring"
    elif preserve_color == "Histogram matching": preserve_color = "histogram_matching"
    with torch.no_grad():
        stylized_img = model(content, styles, style_strength, interpolation_weights, preserve_color = preserve_color)
    return tensor_to_img(stylized_img)

title = "Artistic Style Transfer"

content_img = gr.components.Image(label="Content image", type = "pil")

style_img_1 = gr.components.Image(label="Style images", type = "pil")
iw_1 = gr.components.Slider(0., 1., label = "Style 1 strength")
style_img_2 = gr.components.Image(label="Style images", type = "pil")
iw_2 = gr.components.Slider(0., 1., label = "Style 2 strength")
style_img_3 = gr.components.Image(label="Style images", type = "pil")
iw_3 = gr.components.Slider(0., 1., label = "Style 3 strength")
style_strength =  gr.components.Slider(0., 1., label = "Adjust style strength")
preserve_color = gr.components.Dropdown(["None", "Whitening & Coloring", "Histogram matching"], label = "Choose color preserving mode")

interface = gr.Interface(fn = style_transfer,
                         inputs = [content_img,
                                   style_strength,
                                   style_img_1,
                                   iw_1,
                                   style_img_2,
                                   iw_2,
                                   style_img_3,
                                   iw_3,
                                   preserve_color],
                         outputs = gr.components.Image(),
                         title = title
                         )
interface.queue()
interface.launch(share = True, debug = True)