File size: 7,411 Bytes
1f7d4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "# Uncomment if you don't have the following modules\n",
    "#pip install -qq gradio\n",
    "#pip install -qq torch\n",
    "#pip install -qq PIL\n",
    "#pip install -qq torchvision"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from PIL import Image\n",
    "import torch\n",
    "import torchvision\n",
    "import torchvision.transforms as transforms\n",
    "from utils import transformer, tensor_to_img\n",
    "from network import Style_Transfer_Network\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "device = \"cpu\"\n",
    "if torch.cuda.is_available(): device = \"cuda\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\VICTUS\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\torchvision\\models\\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n",
      "  warnings.warn(\n",
      "C:\\Users\\VICTUS\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\torchvision\\models\\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG19_Weights.IMAGENET1K_V1`. You can also use `weights=VGG19_Weights.DEFAULT` to get the most up-to-date weights.\n",
      "  warnings.warn(msg)\n",
      "C:\\Users\\VICTUS\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\torchvision\\models\\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=None`.\n",
      "  warnings.warn(msg)\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#import gradio as gr\n",
    "check_point = torch.load('check_point1_0.pth', map_location = device)\n",
    "transfer_network = Style_Transfer_Network().to(device)\n",
    "transfer_network.load_state_dict(check_point['state_dict'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7860\n",
      "Running on public URL: https://b4e9024bf7c14725c6.gradio.live\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"https://b4e9024bf7c14725c6.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def style_transfer(content_img, style_strength, style_img_1 = None, iw_1 = 0, style_img_2 = None, iw_2 = 0, style_img_3 = None, iw_3 = 0, preserve_color = None):\n",
    "    transform = transformer(imsize = 512)\n",
    "\n",
    "    content = transform(content_img).unsqueeze(0).to(device)\n",
    "\n",
    "    iw = [iw_1, iw_2, iw_3]\n",
    "    interpolation_weights = [i/ sum(iw) for i in iw]\n",
    "\n",
    "    style_imgs = [style_img_1, style_img_2, style_img_3]\n",
    "    styles = []\n",
    "    for style_img in style_imgs:\n",
    "      if style_img is not None:\n",
    "        styles.append(transform(style_img).unsqueeze(0).to(device))\n",
    "    if preserve_color == \"None\": preserve_color = None\n",
    "    elif preserve_color == \"Whitening & Coloring\": preserve_color = \"whiten_and_color\"\n",
    "    elif preserve_color == \"Histogram matching\": preserve_color = \"histogram_matching\"\n",
    "    with torch.no_grad():\n",
    "        stylized_img = transfer_network(content, styles, style_strength, interpolation_weights, preserve_color = preserve_color)\n",
    "    return tensor_to_img(stylized_img)\n",
    "\n",
    "title = \"Artistic Style Transfer\"\n",
    "\n",
    "content_img = gr.components.Image(label=\"Content image\", type = \"pil\")\n",
    "\n",
    "style_img_1 = gr.components.Image(label=\"Style images\", type = \"pil\")\n",
    "iw_1 = gr.components.Slider(0., 1., label = \"Style 1 interpolation\")\n",
    "style_img_2 = gr.components.Image(label=\"Style images\", type = \"pil\")\n",
    "iw_2 = gr.components.Slider(0., 1., label = \"Style 2 interpolation\")\n",
    "style_img_3 = gr.components.Image(label=\"Style images\", type = \"pil\")\n",
    "iw_3 = gr.components.Slider(0., 1., label = \"Style 3 interpolation\")\n",
    "style_strength =  gr.components.Slider(0., 1., label = \"Adjust style strength\")\n",
    "preserve_color = gr.components.Dropdown([\"None\", \"Whitening & Coloring\", \"Histogram matching\"], label = \"Choose color preserving mode\")\n",
    "\n",
    "interface = gr.Interface(fn = style_transfer,\n",
    "                         inputs = [content_img,\n",
    "                                   style_strength,\n",
    "                                   style_img_1,\n",
    "                                   iw_1,\n",
    "                                   style_img_2,\n",
    "                                   iw_2,\n",
    "                                   style_img_3,\n",
    "                                   iw_3,\n",
    "                                   preserve_color],\n",
    "                         outputs = gr.components.Image(),\n",
    "                         title = title,\n",
    "                         \n",
    "                         )\n",
    "interface.queue()\n",
    "interface.launch(share = True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}