File size: 3,188 Bytes
f72cf0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaabb20
f72cf0a
eaabb20
f72cf0a
3626f45
f72cf0a
 
 
 
 
 
39dcf8d
f72cf0a
 
 
 
 
 
 
 
 
 
 
 
 
37fd30f
d1aeb88
37fd30f
 
9d4d12d
37fd30f
 
3626f45
37fd30f
3626f45
 
eaabb20
fd5d333
eaabb20
 
 
 
f72cf0a
8be4633
d1aeb88
f72cf0a
39dcf8d
f72cf0a
eaabb20
f72cf0a
 
 
 
 
 
 
fedc6c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import onnxruntime
import numpy as np
import pyworld as pw
import librosa
import soundfile as sf

def resize2d(source, target_len):
    source[source<0.001] = np.nan
    target = np.interp(np.linspace(0, len(source)-1, num=target_len,endpoint=True), np.arange(0, len(source)), source)
    return np.nan_to_num(target)

def _calculate_f0(input: np.ndarray,length,sr,f0min,f0max,
                      use_continuous_f0: bool=True,
                      use_log_f0: bool=True) -> np.ndarray:
        input = input.astype(float)
        frame_period = len(input)/sr/(length)*1000
        f0, timeaxis = pw.dio(
            input,
            fs=sr,
            f0_floor=f0min,
            f0_ceil=f0max,
            frame_period=frame_period)
        f0 = pw.stonemask(input, f0, timeaxis, sr)
        if use_log_f0:
            nonzero_idxs = np.where(f0 != 0)[0]
            f0[nonzero_idxs] = np.log(f0[nonzero_idxs])
        return f0.reshape(-1)


def get_text(wav,sr,transform=1.0):

    #wav, sr = librosa.load(file,sr=None)
    if len(wav.shape) > 1:
        wav = librosa.to_mono(wav.transpose(1, 0)) 
    if sr!=16000:  
        wav16 = librosa.resample(wav, sr, 16000)
    else:
        wav16=wav
    
    source = {"source":np.expand_dims(np.expand_dims(wav16,0),0)}
    hubertsession = onnxruntime.InferenceSession("hubert.onnx",providers=['CUDAExecutionProvider'])
    units = np.array(hubertsession.run(['embed'], source)[0])
    f0=_calculate_f0(wav,units.shape[1],sr,
            f0min=librosa.note_to_hz('C2'),
            f0max=librosa.note_to_hz('C7'))
    f0=resize2d(f0,units.shape[1])
    f0[f0!=0]=f0[f0!=0]+np.log(transform)
    expf0 = np.expand_dims(f0,(0,2))
    output=np.concatenate((units,expf0,expf0),axis=2)
    return output.astype(np.float32),f0

def getkey(key):
    return np.power(2,key/12.0)

def infer(f,r,speaker,key,reqf0=False):
    speaker=int(speaker[7:])
    if not f is None:
        file=f
    elif not r is None:
        file=r
    else:
        return "请上传音频", None
    sr, audio = file
    if sr<16000:
        return "采样率过低,请上传至少拥有16000Hz采样率的音频",None
    duration = audio.shape[0] / sr
    print(audio.shape,sr,duration)
    if duration > 120:
        return "请上传小于2min的音频", None
    audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
    x,sourcef0 = get_text(audio,sr,getkey(key))
    x_lengths = [np.size(x,1)]
    print(x_lengths[0],sr,speaker,key)
    sid = [speaker]
    ort_inputs = {'x':x,'x_lengths':x_lengths,'sid':sid,"noise_scale":[0.667],"length_scale":[1.0],"noise_scale_w":[0.8]} 
    infersession = onnxruntime.InferenceSession("onnxmodel334.onnx",providers=['CUDAExecutionProvider'])
    ort_output = infersession.run(['audio'], ort_inputs)
    #sf.write(o,ort_output[0][0][0],22050,'PCM_16',format='wav')
    genf0=np.array([])
    if reqf0:
        wav, sr = librosa.load(o,sr=None)
        genf0=_calculate_f0(wav,x_lengths[0],sr,
            f0min=librosa.note_to_hz('C2'),
            f0max=librosa.note_to_hz('C7'))
        genf0=resize2d(genf0,x_lengths[0])
    return 'success',(22050,ort_output[0][0][0])#sourcef0.tolist(),genf0.tolist()