fuyu-8b-demo / app.py
1littlecoder's picture
new share
4bedc91
import gradio as gr
import re
import torch
from PIL import Image
from transformers import AutoTokenizer, FuyuForCausalLM, FuyuImageProcessor, FuyuProcessor
model_id = "adept/fuyu-8b"
dtype = torch.bfloat16
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype)
processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer)
CAPTION_PROMPT = "Generate a coco-style caption.\n"
DETAILED_CAPTION_PROMPT = "What is happening in this image?"
def resize_to_max(image, max_width=1920, max_height=1080):
width, height = image.size
if width <= max_width and height <= max_height:
return image
scale = min(max_width/width, max_height/height)
width = int(width*scale)
height = int(height*scale)
return image.resize((width, height), Image.LANCZOS)
def pad_to_size(image, canvas_width=1920, canvas_height=1080):
width, height = image.size
if width >= canvas_width and height >= canvas_height:
return image
# Paste at (0, 0)
canvas = Image.new("RGB", (canvas_width, canvas_height))
canvas.paste(image)
return canvas
def predict(image, prompt):
# image = image.convert('RGB')
model_inputs = processor(text=prompt, images=[image])
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
generation_output = model.generate(**model_inputs, max_new_tokens=50)
prompt_len = model_inputs["input_ids"].shape[-1]
return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True)
def caption(image, detailed_captioning):
if detailed_captioning:
caption_prompt = DETAILED_CAPTION_PROMPT
else:
caption_prompt = CAPTION_PROMPT
return predict(image, caption_prompt).lstrip()
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def scale_factor_to_fit(original_size, target_size=(1920, 1080)):
width, height = original_size
max_width, max_height = target_size
if width <= max_width and height <= max_height:
return 1.0
return min(max_width/width, max_height/height)
def tokens_to_box(tokens, original_size):
bbox_start = tokenizer.convert_tokens_to_ids("<0x00>")
bbox_end = tokenizer.convert_tokens_to_ids("<0x01>")
try:
# Assumes a single box
bbox_start_pos = (tokens == bbox_start).nonzero(as_tuple=True)[0].item()
bbox_end_pos = (tokens == bbox_end).nonzero(as_tuple=True)[0].item()
if bbox_end_pos != bbox_start_pos + 5:
return tokens
# Retrieve transformed coordinates from tokens
coords = tokenizer.convert_ids_to_tokens(tokens[bbox_start_pos+1:bbox_end_pos])
# Scale back to original image size and multiply by 2
scale = scale_factor_to_fit(original_size)
top, left, bottom, right = [2 * int(float(c)/scale) for c in coords]
# Replace the IDs so they get detokenized right
replacement = f" <box>{top}, {left}, {bottom}, {right}</box>"
replacement = tokenizer.tokenize(replacement)[1:]
replacement = tokenizer.convert_tokens_to_ids(replacement)
replacement = torch.tensor(replacement).to(tokens)
tokens = torch.cat([tokens[:bbox_start_pos], replacement, tokens[bbox_end_pos+1:]], 0)
return tokens
except:
gr.Error("Can't convert tokens.")
return tokens
def coords_from_response(response):
# y1, x1, y2, x2
pattern = r"<box>(\d+),\s*(\d+),\s*(\d+),\s*(\d+)</box>"
match = re.search(pattern, response)
if match:
# Unpack and change order
y1, x1, y2, x2 = [int(coord) for coord in match.groups()]
return (x1, y1, x2, y2)
else:
gr.Error("The string is malformed or does not match the expected pattern.")
def localize(image, query):
prompt = f"When presented with a box, perform OCR to extract text contained within it. If provided with text, generate the corresponding bounding box.\n{query}"
# Downscale and/or pad to 1920x1080
padded = resize_to_max(image)
padded = pad_to_size(padded)
model_inputs = processor(text=prompt, images=[padded])
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
generation_output = model.generate(**model_inputs, max_new_tokens=40)
prompt_len = model_inputs["input_ids"].shape[-1]
tokens = generation_output[0][prompt_len:]
tokens = tokens_to_box(tokens, image.size)
decoded = tokenizer.decode(tokens, skip_special_tokens=True)
coords = coords_from_response(decoded)
return image, [(coords, f"Location of \"{query}\"")]
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<h1 id="title">Fuyu Multimodal Demo</h1>
<h3><a href="https://hf.co/adept/fuyu-8b">Fuyu-8B</a> is a multimodal model that supports a variety of tasks combining text and image prompts.</h3>
For example, you can use it for captioning by asking it to describe an image. You can also ask it questions about an image, a task known as Visual Question Answering, or VQA. This demo lets you explore captioning and VQA, with more tasks coming soon :)
Learn more about the model in <a href="https://www.adept.ai/blog/fuyu-8b">our blog post</a>.
<br>
<br>
<strong>Note: This is a raw model release. We have not added further instruction-tuning, postprocessing or sampling strategies to control for undesirable outputs. The model may hallucinate, and you should expect to have to fine-tune the model for your use-case!</strong>
<h3>Play with Fuyu-8B in this demo! πŸ’¬</h3>
"""
)
with gr.Tab("Visual Question Answering"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload your Image", type="pil")
text_input = gr.Textbox(label="Ask a Question")
vqa_output = gr.Textbox(label="Output")
vqa_btn = gr.Button("Answer Visual Question")
gr.Examples(
[["assets/vqa_example_1.png", "How is this made?"], ["assets/vqa_example_2.png", "What is this flower and where is it's origin?"],
["assets/docvqa_example.png", "How many items are sold?"], ["assets/screen2words_ui_example.png", "What is this app about?"]],
inputs = [image_input, text_input],
outputs = [vqa_output],
fn=predict,
cache_examples=True,
label='Click on any Examples below to get VQA results quickly πŸ‘‡'
)
with gr.Tab("Image Captioning"):
with gr.Row():
with gr.Column():
captioning_input = gr.Image(label="Upload your Image", type="pil")
detailed_captioning_checkbox = gr.Checkbox(label="Enable detailed captioning")
captioning_output = gr.Textbox(label="Output")
captioning_btn = gr.Button("Generate Caption")
gr.Examples(
[["assets/captioning_example_1.png", False], ["assets/captioning_example_2.png", True]],
inputs = [captioning_input, detailed_captioning_checkbox],
outputs = [captioning_output],
fn=caption,
cache_examples=True,
label='Click on any Examples below to get captioning results quickly πŸ‘‡'
)
captioning_btn.click(fn=caption, inputs=[captioning_input, detailed_captioning_checkbox], outputs=captioning_output)
vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output)
with gr.Tab("Find Text in Screenshots"):
with gr.Row():
with gr.Column():
localization_input = gr.Image(label="Upload your Image", type="pil")
query_input = gr.Textbox(label="Text to find")
localization_btn = gr.Button("Locate Text")
with gr.Column():
with gr.Row(height=800):
localization_output = gr.AnnotatedImage(label="Text Position")
gr.Examples(
[["assets/localization_example_1.jpeg", "Share your repair"],
["assets/screen2words_ui_example.png", "statistics"]],
inputs = [localization_input, query_input],
outputs = [localization_output],
fn=localize,
cache_examples=True,
label='Click on any Examples below to get localization results quickly πŸ‘‡'
)
localization_btn.click(fn=localize, inputs=[localization_input, query_input], outputs=localization_output)
demo.launch(share = True)