import os import gradio as gr from PIL import Image os.system('wget https://github.com/FanChiMao/SRMNet-thesis/releases/download/v0.0/Deblurring_motionblur.pth -P experiments/pretrained_models') os.system('wget https://github.com/FanChiMao/SRMNet-thesis/releases/download/v0.0/Dehaze_realworld.pth -P experiments/pretrained_models') os.system('wget https://github.com/FanChiMao/SRMNet-thesis/releases/download/v0.0/Denoise_gaussian.pth -P experiments/pretrained_models') os.system('wget https://github.com/FanChiMao/SRMNet-thesis/releases/download/v0.0/Denoise_realworld.pth -P experiments/pretrained_models') os.system('wget https://github.com/FanChiMao/SRMNet-thesis/releases/download/v0.0/Deraining_raindrop.pth -P experiments/pretrained_models') os.system('wget https://github.com/FanChiMao/SRMNet-thesis/releases/download/v0.0/Deraining_rainstreak.pth -P experiments/pretrained_models') os.system('wget https://github.com/FanChiMao/SRMNet-thesis/releases/download/v0.0/LLEnhancement.pth -P experiments/pretrained_models') os.system('wget https://github.com/FanChiMao/SRMNet-thesis/releases/download/v0.0/Retouching.pth -P experiments/pretrained_models') def inference(img, model): os.system('mkdir test') img.save("test/1.png", "PNG") if model == 'Denoising (gaussian)': os.system('python main_test_SRMNet.py --input_dir test --weights experiments/pretrained_models/Denoise_gaussian.pth') elif model == 'Denoising (real-world)': os.system('python main_test_SRMNet.py --input_dir test --weights experiments/pretrained_models/Denoise_realworld.pth') elif model == 'Deblurring (motion-blur)': os.system('python main_test_SRMNet.py --input_dir test --weights experiments/pretrained_models/Deblurring_motionblur.pth') elif model == 'Dehazing (dense haze)': os.system('python main_test_SRMNet.py --input_dir test --weights experiments/pretrained_models/Dehaze_realworld.pth') elif model == 'Deraining (rainstreak)': os.system('python main_test_SRMNet.py --input_dir test --weights experiments/pretrained_models/Deraining_rainstreak.pth') elif model == 'Deraining (raindrop)': os.system('python main_test_SRMNet.py --input_dir test --weights experiments/pretrained_models/Deraining_raindrop.pth') elif model == 'Low-light Enhancement': os.system('python main_test_SRMNet.py --input_dir test --weights experiments/pretrained_models/LLEnhancement.pth') elif model == 'Retouching': os.system('python main_test_SRMNet.py --input_dir test --weights experiments/pretrained_models/Retouching.pth') return 'result/1.png' title = "[NCHU thesis] Image Restoration by Selective Residual Block on Improved Hierarchical Encoder-Decoder Networks" description = "" article = "

Image Restoration by Selective Residual Block on Improved Hierarchical Encoder-Decoder Networks | Github Repo

visitor badge
" examples = [['low-light.png', 'LOL'], ['low-light_2.png', 'MIT-5K']] gr.Interface( inference, [gr.inputs.Image(type="pil", label="Input"), gr.inputs.Dropdown(choices=[ 'Denoising (gaussian)', 'Denoising (real-world)', 'Deblurring (motion-blur)', 'Dehazing (dense haze)', 'Deraining (rainstreak)', 'Deraining (raindrop)', 'Low-light Enhancement', 'Retouching', ], type="value", default='Denoising (gaussian)', label="model")], gr.outputs.Image(type="file", label="Output"), title=title, description=description, article=article, allow_flagging=False, allow_screenshot=False, examples=examples ).launch(debug=True)