File size: 6,573 Bytes
5f898a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import numpy as np
import gradio as gr
from PIL import Image
import matplotlib
from omegaconf import OmegaConf
from einops import repeat
import librosa
from ldm.models.diffusion.ddim import DDIMSampler
from vocoder.bigvgan.models import VocoderBigVGAN
from ldm.util import instantiate_from_config
from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000

SAMPLE_RATE = 16000
cmap_transform = matplotlib.cm.viridis
torch.set_grad_enabled(False)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

def initialize_model(config, ckpt):
    config = OmegaConf.load(config)
    model = instantiate_from_config(config.model)
    model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)

    model = model.to(device)
    print(model.device,device,model.cond_stage_model.device)
    sampler = DDIMSampler(model)
    return sampler


def make_batch_sd(
        mel,
        mask,
        device,
        num_samples=1):

    mel = torch.from_numpy(mel)[None,None,...].to(dtype=torch.float32)
    mask = torch.from_numpy(mask)[None,None,...].to(dtype=torch.float32)
    masked_mel = (1 - mask) * mel

    mel = mel * 2 - 1
    mask = mask * 2 - 1
    masked_mel = masked_mel * 2 -1

    batch = {
        "mel": repeat(mel.to(device=device), "1 ... -> n ...", n=num_samples),
        "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
        "masked_mel": repeat(masked_mel.to(device=device), "1 ... -> n ...", n=num_samples),
    }
    return batch

def gen_mel(input_audio):
    sr,ori_wav = input_audio
    print(sr,ori_wav.shape,ori_wav)

    ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 # order='C'是以C语言格式存储,不用管
    if len(ori_wav.shape)==2:# stereo
        ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
    print(sr,ori_wav.shape,ori_wav)
    ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE)

    mel_len,hop_size = 848,256
    input_len = mel_len * hop_size
    if len(ori_wav) < input_len:
        input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0)
    else:
        input_wav = ori_wav[:input_len]

    mel = TRANSFORMS_16000(input_wav)
    return mel

def show_mel_fn(input_audio):
    crop_len = 500 # the full mel cannot be showed due to gradio's Image bug when using tool='sketch'
    crop_mel = gen_mel(input_audio)[:,:crop_len]
    color_mel = cmap_transform(crop_mel)
    return Image.fromarray((color_mel*255).astype(np.uint8))


def inpaint(sampler, batch, seed, ddim_steps, num_samples=1, W=512, H=512):
    model = sampler.model
    
    prng = np.random.RandomState(seed)
    start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8)
    start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)

    c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"]))
    cc = torch.nn.functional.interpolate(batch["mask"],
                                            size=c.shape[-2:])
    c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask

    shape = (c.shape[1]-1,)+c.shape[2:]
    samples_ddim, _ = sampler.sample(S=ddim_steps,
                                        conditioning=c,
                                        batch_size=c.shape[0],
                                        shape=shape,
                                        verbose=False)
    x_samples_ddim = model.decode_first_stage(samples_ddim)

    
    mask = batch["mask"]# [-1,1]
    mel = torch.clamp((batch["mel"]+1.0)/2.0,min=0.0, max=1.0)
    mask = torch.clamp((batch["mask"]+1.0)/2.0,min=0.0, max=1.0)
    predicted_mel = torch.clamp((x_samples_ddim+1.0)/2.0,min=0.0, max=1.0)
    inpainted = (1-mask)*mel+mask*predicted_mel
    inpainted = inpainted.cpu().numpy().squeeze()
    inapint_wav = vocoder.vocode(inpainted)

    return inpainted,inapint_wav


def predict(input_audio,mel_and_mask,ddim_steps,seed):
    show_mel = np.array(mel_and_mask['image'].convert("L"))/255 # 由于展示的mel只展示了一部分,所以需要重新从音频生成mel
    mask = np.array(mel_and_mask["mask"].convert("L"))/255

    mel_bins,mel_len = 80,848

    input_mel = gen_mel(input_audio)[:,:mel_len]# 由于展示的mel只展示了一部分,所以需要重新从音频生成mel
    mask = np.pad(mask,((0,0),(0,mel_len-mask.shape[1])),mode='constant',constant_values=0)# 将mask填充到原来的mel的大小
    print(mask.shape,input_mel.shape)
    with torch.no_grad():
        batch = make_batch_sd(input_mel,mask,device,num_samples=1)
        inpainted,gen_wav = inpaint(
            sampler=sampler,
            batch=batch,
            seed=seed,
            ddim_steps=ddim_steps,
            num_samples=1,
            H=mel_bins, W=mel_len
        )
    inpainted = inpainted[:,:show_mel.shape[1]]
    color_mel = cmap_transform(inpainted)
    input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0])
    gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len]
    return Image.fromarray((color_mel*255).astype(np.uint8)),(SAMPLE_RATE,gen_wav)


sampler = initialize_model('./configs/inpaint/txt2audio_args.yaml', './useful_ckpts/inpaint7_epoch00047.ckpt')
vocoder = VocoderBigVGAN('./vocoder/logs/bigv16k53w',device=device)

block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown("## Make-An-Audio Inpainting")

    with gr.Row():
        with gr.Column():
            input_audio = gr.inputs.Audio()
            
            show_button = gr.Button("Show Mel")

            run_button = gr.Button("Predict Masked Place")
            with gr.Accordion("Advanced options", open=False):
                ddim_steps = gr.Slider(label="Steps", minimum=1,
                                       maximum=150, value=100, step=1)
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=2147483647,
                    step=1,
                    randomize=True,
                )
        with gr.Column():
            show_inpainted = gr.Image(type="pil").style(width=848,height=80)
            outaudio = gr.Audio()
    show_mel = gr.Image(type="pil",tool='sketch')#.style(width=848,height=80) # 加上这个没办法展示完全图片
    show_button.click(fn=show_mel_fn, inputs=[input_audio], outputs=show_mel)

    run_button.click(fn=predict, inputs=[input_audio,show_mel,ddim_steps,seed], outputs=[show_inpainted,outaudio])


block.launch()