File size: 1,188 Bytes
a90d470 c2889e8 3a7236e 0436d22 8564b32 d7528b5 0436d22 8564b32 0436d22 d7528b5 0436d22 3a7236e a90d470 8564b32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from sklearn.externals import joblib
# Load your serialized objects
model = joblib.load('random_forest_model_3labels2.joblib')
encoder = joblib.load('label_encoder2.joblib')
vectorizer = joblib.load('count_vectorizer2.joblib')
def predict(input_text):
# Preprocess the input with your vectorizer and encoder as needed
vectorized_text = vectorizer.transform([input_text])
# Make a prediction
prediction = model.predict(vectorized_text)
# Decode the prediction into a readable label
decoded_prediction = encoder.inverse_transform(prediction)
# Return the decoded prediction
return decoded_prediction[0] #
# Setup the Gradio interface
iface = gr.Interface(fn=predict,
inputs=gr.Textbox(lines=2, placeholder="Enter Text Here..."),
outputs="text",
description="Detects hate speech in text. Outputs 'Neutral or Ambiguous', 'Not Hate', or 'Offensive or Hate Speech'.")
# Launch the app
iface.launch()
"""
import gradio as gr
def greet(name):
return "Hello " + name + "!!"
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
""" |