File size: 1,898 Bytes
c3b0ed3 97a2094 c3b0ed3 97a2094 d70cd34 97a2094 c3b0ed3 6814e6c c3b0ed3 97a2094 c3b0ed3 97a2094 868d991 97a2094 c3b0ed3 97a2094 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
from transformers import pipeline
import pandas as pd
import gradio as gr
# Define the models
models = {
"GTQA (google/tapas-large-finetuned-wtq)": pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq"),
"GTSQA (google/tapas-large-finetuned-sqa)": pipeline(task="table-question-answering", model="google/tapas-large-finetuned-sqa"),
"MSWTQA (microsoft/tapex-large-finetuned-wtq)": pipeline(task="table-question-answering", model="microsoft/tapex-large-finetuned-wtq"),
"MSTQA (microsoft/tapex-large-finetuned-wikisql)": pipeline(task="table-question-answering", model="microsoft/tapex-large-finetuned-wikisql")
}
def main(model_choice, file_path, text):
# Read the Excel file
table_df = pd.read_excel(file_path, engine='openpyxl').astype(str)
# Prepare the input for the model
tqa_pipeline_input = {
"table": table_df,
"query": text
}
# Get the selected model
model = models[model_choice]
# Run the model
result = model(tqa_pipeline_input)["answer"]
return result
iface = gr.Interface(
fn=main,
inputs=[
gr.Dropdown(choices=list(models.keys()), label="Select Model", value=list(models.keys())[0]),
gr.File(type="filepath", label="Upload XLSX file"),
gr.Textbox(type="text", label="Enter text"),
],
outputs=[gr.Textbox(type="text", label="Text Input Output")],
title="Multi-input Processor",
description="Upload an XLSX file and/or enter text, and the processed output will be displayed.",
examples=[
["","Literature_review_Test.xlsx", "How many papers are before the year 2020?"],
["","Literature_review_Test.xlsx", "How many papers are after the year 2020?"],
["","Literature_review_Test.xlsx", "what is the paper with NISIT in the title?"],
],
)
# Launch the Gradio interface
iface.launch(debug=True)
|