T2I-Adapter / README.md
Adapter's picture
first upload
fb6c2da
|
raw
history blame
8.22 kB
<p align="center">
<img src="assets/logo2.png" height=65>
</p>
<div align="center">
⏬[**Download Models**](#-download-models) **|** πŸ’»[**How to Test**](#-how-to-test)
</div>
Official implementation of T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models.
#### [Paper](https://arxiv.org/abs/2302.08453)
<p align="center">
<img src="assets/overview1.png" height=250>
</p>
We propose T2I-Adapter, a **simple and small (~70M parameters, ~300M storage space)** network that can provide extra guidance to pre-trained text-to-image models while **freezing** the original large text-to-image models.
T2I-Adapter aligns internal knowledge in T2I models with external control signals.
We can train various adapters according to different conditions, and achieve rich control and editing effects.
<p align="center">
<img src="assets/teaser.png" height=500>
</p>
### ⏬ Download Models
Put the downloaded models in the `T2I-Adapter/models` folder.
1. The **T2I-Adapters** can be download from <https://huggingface.co/TencentARC/T2I-Adapter>.
2. The pretrained **Stable Diffusion v1.4** models can be download from <https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/tree/main>. You need to download the `sd-v1-4.ckpt
` file.
3. [Optional] If you want to use **Anything v4.0** models, you can download the pretrained models from <https://huggingface.co/andite/anything-v4.0/tree/main>. You need to download the `anything-v4.0-pruned.ckpt` file.
4. The pretrained **clip-vit-large-patch14** folder can be download from <https://huggingface.co/openai/clip-vit-large-patch14/tree/main>. Remember to download the whole folder!
5. The pretrained keypose detection models include FasterRCNN (human detection) from <https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth> and HRNet (pose detection) from <https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth>.
After downloading, the folder structure should be like this:
<p align="center">
<img src="assets/downloaded_models.png" height=100>
</p>
### πŸ”§ Dependencies and Installation
- Python >= 3.6 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html))
- [PyTorch >= 1.4](https://pytorch.org/)
```bash
pip install -r requirements.txt
```
- If you want to use the full function of keypose-guided generation, you need to install MMPose. For details please refer to <https://github.com/open-mmlab/mmpose>.
### πŸ’» How to Test
- The results are in the `experiments` folder.
- If you want to use the `Anything v4.0`, please add `--ckpt models/anything-v4.0-pruned.ckpt` in the following commands.
#### **For Simple Experience**
> python app.py
#### **Sketch Adapter**
- Sketch to Image Generation
> python test_sketch.py --plms --auto_resume --prompt "A car with flying wings" --path_cond examples/sketch/car.png --ckpt models/sd-v1-4.ckpt --type_in sketch
- Image to Image Generation
> python test_sketch.py --plms --auto_resume --prompt "A beautiful girl" --path_cond examples/anything_sketch/human.png --ckpt models/sd-v1-4.ckpt --type_in image
- Generation with **Anything** setting
> python test_sketch.py --plms --auto_resume --prompt "A beautiful girl" --path_cond examples/anything_sketch/human.png --ckpt models/anything-v4.0-pruned.ckpt --type_in image
##### Gradio Demo
<p align="center">
<img src="assets/gradio_sketch.png">
</p>
You can use gradio to experience all these three functions at once. CPU is also supported by setting device to 'cpu'.
```bash
python gradio_sketch.py
```
#### **Keypose Adapter**
- Keypose to Image Generation
> python test_keypose.py --plms --auto_resume --prompt "A beautiful girl" --path_cond examples/keypose/iron.png --type_in pose
- Image to Image Generation
> python test_keypose.py --plms --auto_resume --prompt "A beautiful girl" --path_cond examples/sketch/human.png --type_in image
- Generation with **Anything** setting
> python test_keypose.py --plms --auto_resume --prompt "A beautiful girl" --path_cond examples/sketch/human.png --ckpt models/anything-v4.0-pruned.ckpt --type_in image
##### Gradio Demo
<p align="center">
<img src="assets/gradio_keypose.png">
</p>
You can use gradio to experience all these three functions at once. CPU is also supported by setting device to 'cpu'.
```bash
python gradio_keypose.py
```
#### **Segmentation Adapter**
> python test_seg.py --plms --auto_resume --prompt "A black Honda motorcycle parked in front of a garage" --path_cond examples/seg/motor.png
#### **Two adapters: Segmentation and Sketch Adapters**
> python test_seg_sketch.py --plms --auto_resume --prompt "An all white kitchen with an electric stovetop" --path_cond examples/seg_sketch/mask.png --path_cond2 examples/seg_sketch/edge.png
#### **Local editing with adapters**
> python test_sketch_edit.py --plms --auto_resume --prompt "A white cat" --path_cond examples/edit_cat/edge_2.png --path_x0 examples/edit_cat/im.png --path_mask examples/edit_cat/mask.png
## Stable Diffusion + T2I-Adapters (only ~70M parameters, ~300M storage space)
The following is the detailed structure of a **Stable Diffusion** model with the **T2I-Adapter**.
<p align="center">
<img src="assets/overview2.png" height=300>
</p>
<!-- ## Web Demo
* All the usage of three T2I-Adapters (i.e, sketch, keypose and segmentation) are integrated into [Huggingface Spaces]() πŸ€— using [Gradio](). Have fun with the Web Demo. -->
## πŸš€ Interesting Applications
### Stable Diffusion results guided with the sketch T2I-Adapter
The corresponding edge maps are predicted by PiDiNet. The sketch T2I-Adapter can well generalize to other similar sketch types, for example, sketches from the Internet and user scribbles.
<p align="center">
<img src="assets/sketch_base.png" height=800>
</p>
### Stable Diffusion results guided with the keypose T2I-Adapter
The keypose results predicted by the [MMPose](https://github.com/open-mmlab/mmpose).
With the keypose guidance, the keypose T2I-Adapter can also help to generate animals with the same keypose, for example, pandas and tigers.
<p align="center">
<img src="assets/keypose_base.png" height=600>
</p>
### T2I-Adapter with Anything-v4.0
Once the T2I-Adapter is trained, it can act as a **plug-and-play module** and can be seamlessly integrated into the finetuned diffusion models **without re-training**, for example, Anything-4.0.
#### ✨ Anything results with the plug-and-play sketch T2I-Adapter (no extra training)
<p align="center">
<img src="assets/sketch_anything.png" height=600>
</p>
#### Anything results with the plug-and-play keypose T2I-Adapter (no extra training)
<p align="center">
<img src="assets/keypose_anything.png" height=600>
</p>
### Local editing with the sketch adapter
When combined with the inpaiting mode of Stable Diffusion, we can realize local editing with user specific guidance.
#### ✨ Change the head direction of the cat
<p align="center">
<img src="assets/local_editing_cat.png" height=300>
</p>
#### ✨ Add rabbit ears on the head of the Iron Man.
<p align="center">
<img src="assets/local_editing_ironman.png" height=400>
</p>
### Combine different concepts with adapter
Adapter can be used to enhance the SD ability to combine different concepts.
#### ✨ A car with flying wings. / A doll in the shape of letter β€˜A’.
<p align="center">
<img src="assets/enhance_SD2.png" height=600>
</p>
### Sequential editing with the sketch adapter
We can realize the sequential editing with the adapter guidance.
<p align="center">
<img src="assets/sequential_edit.png">
</p>
### Composable Guidance with multiple adapters
Stable Diffusion results guided with the segmentation and sketch adapters together.
<p align="center">
<img src="assets/multiple_adapters.png">
</p>
![visitors](https://visitor-badge.glitch.me/badge?page_id=TencentARC/T2I-Adapter)
Logo materials: [adapter](https://www.flaticon.com/free-icon/adapter_4777242), [lightbulb](https://www.flaticon.com/free-icon/lightbulb_3176369)