File size: 7,137 Bytes
7b04d4e 64b8a91 49a323c 7b04d4e 32acaa8 64b8a91 a5f647b 771e08a 5b41d95 1cddd79 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 e9cc5f1 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 64b8a91 312a2f2 64b8a91 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 64b8a91 5b41d95 d2c67f3 95ca446 5b41d95 64b8a91 1cddd79 5b41d95 b4f3ea6 b6ce847 5b41d95 27eab0f 5b41d95 33fd6ad 5b41d95 b4f3ea6 1cddd79 7b04d4e 1cddd79 64b8a91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64
import random
def create_monitor_interface():
api_key = os.getenv("GROQ_API_KEY")
class SafetyMonitor:
def __init__(self):
self.client = Groq()
self.model_name = "llama-3.2-90b-vision-preview"
self.max_image_size = (800, 800) # Increased size for better visibility
self.colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]
def resize_image(self, image):
height, width = image.shape[:2]
aspect = width / height
if width > height:
new_width = min(self.max_image_size[0], width)
new_height = int(new_width / aspect)
else:
new_height = min(self.max_image_size[1], height)
new_width = int(new_height * aspect)
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
def analyze_frame(self, frame: np.ndarray) -> str:
if frame is None:
return "No frame received"
# Convert and resize image
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif len(frame.shape) == 3 and frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
frame = self.resize_image(frame)
frame_pil = PILImage.fromarray(frame)
# Convert to base64 with minimal quality
buffered = io.BytesIO()
frame_pil.save(buffered,
format="JPEG",
quality=50,
optimize=True)
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
image_url = f"data:image/jpeg;base64,{img_base64}"
try:
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": """Analyze this workplace image and describe each safety concern in this format:
- <location>Description</location>
Use one line per issue, starting with a dash and location in tags."""
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
}
]
},
{
"role": "assistant",
"content": ""
}
],
temperature=0.1,
max_tokens=500,
top_p=1,
stream=False,
stop=None
)
return completion.choices[0].message.content
except Exception as e:
print(f"Detailed error: {str(e)}")
return f"Analysis Error: {str(e)}"
def draw_observations(self, image, observations):
height, width = image.shape[:2]
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
thickness = 2
# Generate random positions for each observation
for idx, obs in enumerate(observations):
color = self.colors[idx % len(self.colors)]
# Generate random box position
box_width = width // 3
box_height = height // 3
x = random.randint(0, width - box_width)
y = random.randint(0, height - box_height)
# Draw rectangle
cv2.rectangle(image, (x, y), (x + box_width, y + box_height), color, 2)
# Add label with background
label = obs[:40] + "..." if len(obs) > 40 else obs
label_size = cv2.getTextSize(label, font, font_scale, thickness)[0]
cv2.rectangle(image, (x, y - 20), (x + label_size[0], y), color, -1)
cv2.putText(image, label, (x, y - 5), font, font_scale, (255, 255, 255), thickness)
return image
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
if frame is None:
return None, "No image provided"
analysis = self.analyze_frame(frame)
display_frame = self.resize_image(frame.copy())
# Parse observations from the analysis
observations = []
for line in analysis.split('\n'):
line = line.strip()
if line.startswith('-'):
# Extract text between <location> tags if present
if '<location>' in line and '</location>' in line:
start = line.find('<location>') + len('<location>')
end = line.find('</location>')
observation = line[end + len('</location>'):].strip()
else:
observation = line[1:].strip() # Remove the dash
if observation:
observations.append(observation)
# Draw observations on the image
annotated_frame = self.draw_observations(display_frame, observations)
return annotated_frame, analysis
# Create the main interface
monitor = SafetyMonitor()
with gr.Blocks() as demo:
gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision")
with gr.Row():
input_image = gr.Image(label="Upload Image")
output_image = gr.Image(label="Annotated Results")
analysis_text = gr.Textbox(label="Detailed Analysis", lines=5)
def analyze_image(image):
if image is None:
return None, "No image provided"
try:
processed_frame, analysis = monitor.process_frame(image)
return processed_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
input_image.change(
fn=analyze_image,
inputs=input_image,
outputs=[output_image, analysis_text]
)
return demo
demo = create_monitor_interface()
demo.launch() |