|
import gradio as gr |
|
from gradio.components import Image, Textbox, Markdown |
|
import cv2 |
|
import numpy as np |
|
from groq import Groq |
|
import time |
|
from PIL import Image as PILImage |
|
import io |
|
import os |
|
|
|
def create_monitor_interface(): |
|
api_key = os.getenv("GROQ_API_KEY") |
|
|
|
if not api_key: |
|
with gr.Blocks() as demo: |
|
gr.Markdown(""" |
|
# ⚠️ Groq API Key Required |
|
|
|
## Setup Instructions for Hugging Face Space: |
|
1. Go to your Space's Settings tab |
|
2. Scroll down to "Repository Secrets" |
|
3. Click "New Secret" |
|
4. Enter: |
|
- Secret name: `GROQ_API_KEY` |
|
- Secret value: Your Groq API key |
|
5. Click "Add secret" |
|
6. Rebuild the Space |
|
|
|
Once configured, the safety monitoring system will be available. |
|
""") |
|
return demo |
|
|
|
class SafetyMonitor: |
|
def __init__(self, model_name: str = "mixtral-8x7b-vision"): |
|
self.client = Groq(api_key=api_key) |
|
self.model_name = model_name |
|
|
|
def analyze_frame(self, frame: np.ndarray) -> str: |
|
if frame is None: |
|
return "No frame received" |
|
|
|
frame_pil = PILImage.fromarray(frame) |
|
img_byte_arr = io.BytesIO() |
|
frame_pil.save(img_byte_arr, format='JPEG') |
|
img_byte_arr = img_byte_arr.getvalue() |
|
|
|
prompt = """Analyze this image for workplace safety issues. Focus on: |
|
1. PPE usage (helmets, vests, etc.) |
|
2. Unsafe behaviors |
|
3. Equipment safety |
|
4. Environmental hazards |
|
Provide specific observations.""" |
|
|
|
try: |
|
completion = self.client.chat.completions.create( |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": prompt}, |
|
{"type": "image", "image": img_byte_arr} |
|
] |
|
} |
|
], |
|
model=self.model_name, |
|
max_tokens=200, |
|
temperature=0.2 |
|
) |
|
return completion.choices[0].message.content |
|
except Exception as e: |
|
return f"Analysis Error: {str(e)}" |
|
|
|
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]: |
|
if frame is None: |
|
return None, "No frame received" |
|
|
|
analysis = self.analyze_frame(frame) |
|
display_frame = frame.copy() |
|
|
|
|
|
overlay = display_frame.copy() |
|
cv2.rectangle(overlay, (5, 5), (640, 200), (0, 0, 0), -1) |
|
cv2.addWeighted(overlay, 0.3, display_frame, 0.7, 0, display_frame) |
|
|
|
y_position = 30 |
|
for line in analysis.split('\n'): |
|
cv2.putText(display_frame, line[:80], (10, y_position), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) |
|
y_position += 30 |
|
|
|
return display_frame, analysis |
|
|
|
|
|
monitor = SafetyMonitor() |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Real-time Safety Monitoring System") |
|
|
|
with gr.Row(): |
|
input_image = Image(label="Input Image", type="numpy", tool="upload") |
|
output_image = Image(label="Analysis Feed", type="numpy") |
|
|
|
analysis_text = Textbox(label="Safety Analysis", lines=5) |
|
|
|
def analyze_image(image): |
|
if image is None: |
|
return None, "No image provided" |
|
processed_frame, analysis = monitor.process_frame(image) |
|
return processed_frame, analysis |
|
|
|
input_image.change( |
|
fn=analyze_image, |
|
inputs=[input_image], |
|
outputs=[output_image, analysis_text], |
|
) |
|
|
|
gr.Markdown(""" |
|
## Instructions: |
|
1. Upload an image using the input panel |
|
2. The system will automatically analyze the image for safety concerns |
|
3. Results will be shown in the analysis feed and text box |
|
""") |
|
|
|
return demo |
|
|
|
demo = create_monitor_interface() |
|
demo.launch() |