capradeepgujaran's picture
Update app.py
5f3406b verified
raw
history blame
5.39 kB
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
from tempfile import NamedTemporaryFile
from pathlib import Path
def create_monitor_interface():
api_key = os.getenv("GROQ_API_KEY")
class SafetyMonitor:
def __init__(self):
self.client = Groq(api_key=api_key)
self.model_name = "llama-3.2-90b-vision-preview"
self.max_image_size = (128, 128)
def resize_image(self, image):
height, width = image.shape[:2]
aspect = width / height
if width > height:
new_width = min(self.max_image_size[0], width)
new_height = int(new_width / aspect)
else:
new_height = min(self.max_image_size[1], height)
new_width = int(new_height * aspect)
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
def analyze_frame(self, frame: np.ndarray) -> str:
if frame is None:
return "No frame received"
# Convert and resize image
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif len(frame.shape) == 3 and frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
frame = self.resize_image(frame)
frame_pil = PILImage.fromarray(frame)
# Convert to base64 with minimal quality
buffered = io.BytesIO()
frame_pil.save(buffered,
format="JPEG",
quality=20,
optimize=True)
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
try:
completion = self.client.chat.completions.create(
messages=[
{
"role": "user",
"content": "You are a workplace safety expert. Analyze the following image for safety concerns."
},
{
"role": "assistant",
"content": "I'll analyze the image for workplace safety concerns and provide specific observations."
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What safety issues do you see?"
},
{
"type": "image_url",
"url": f"data:image/jpeg;base64,{img_base64}"
}
]
}
],
model=self.model_name,
max_tokens=100,
temperature=0.1
)
return completion.choices[0].message.content
except Exception as e:
print(f"Detailed error: {str(e)}")
return f"Analysis Error: {str(e)}"
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
if frame is None:
return None, "No image provided"
analysis = self.analyze_frame(frame)
display_frame = frame.copy()
# Add text overlay
overlay = display_frame.copy()
height, width = display_frame.shape[:2]
cv2.rectangle(overlay, (5, 5), (width-5, 100), (0, 0, 0), -1)
cv2.addWeighted(overlay, 0.3, display_frame, 0.7, 0, display_frame)
# Add analysis text
y_position = 30
lines = analysis.split('\n')
for line in lines:
cv2.putText(display_frame, line[:80], (10, y_position),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
y_position += 30
if y_position >= 90:
break
return display_frame, analysis
# Create the main interface
monitor = SafetyMonitor()
with gr.Blocks() as demo:
gr.Markdown("# Safety Analysis System")
with gr.Row():
input_image = gr.Image(label="Upload Image")
output_image = gr.Image(label="Results")
analysis_text = gr.Textbox(label="Analysis", lines=5)
def analyze_image(image):
if image is None:
return None, "No image provided"
try:
processed_frame, analysis = monitor.process_frame(image)
return processed_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
input_image.change(
fn=analyze_image,
inputs=input_image,
outputs=[output_image, analysis_text]
)
return demo
demo = create_monitor_interface()
demo.launch()